Xét ΔADF và ΔBCF có
AD=BC
\(\widehat{D}=\widehat{C}\)
FD=FC
Do đó: ΔADF=ΔBCF
Suy ra: FA=FB
Xét ΔFAB có FA=FB
nên ΔFAB cân tại F
mà FE là đường trung tuyến ứng với cạnh đáy AB
nên FE là đường cao ứng với cạnh AB
hay FE\(\perp\)AB
Xét ΔADF và ΔBCF có
AD=BC
\(\widehat{D}=\widehat{C}\)
FD=FC
Do đó: ΔADF=ΔBCF
Suy ra: FA=FB
Xét ΔFAB có FA=FB
nên ΔFAB cân tại F
mà FE là đường trung tuyến ứng với cạnh đáy AB
nên FE là đường cao ứng với cạnh AB
hay FE\(\perp\)AB
Cho hình thang cân ABCD (AB // CD) có E, F lần lượt là trung điểm
của các đáy AB, CD. Chứng minh EF vuông góc với AB và CD.
Cho hình thang ABCD( đáy AB và CD ), E là trung điểm của AD, F là trung điểm của BC, EF cắt tại M
a) Chứng minh: AM= MC
b) Cho AB = EM= 2cm, tính x=MF và y= DC?
Cho hình thang cân ABCD có hai đáy AB// CD. Gọi I là giao điểm của 2 đường chéo AC và BD . Đường trung trực của AD và DI cắt nhau tại O. Chứng minh rằng OI vuông góc với BC.
#hinh_thang_can_ABCD
Cho hình thang cân ABCD (A // CD , AB < CD). Gọi MNPQ lần lượt là trung điểm của CD, AB, DB, CA
a, Chứng minh MN là tia phân giác của góc PNQ
b, Tính số đo các góc của tứ giác MPNQ biết các góc nhọn của hình thang cân ABCD là góc C = góc B =50°
c, Hình thang ABCD thỏa mãn điều kiện gì thì tứ giác MPNQ là hình vuông
Giải giúp mình với gấp lắm ạ mai mình cần pl🥺
Cho hình thang cân ABCD (AB // CD, AB < CD), biết AC vuông góc với BD . Gọi M, N lần lượt là trung điểm của AD và BC. Kẻ AH vuông góc với CD (H thuộc CD) biết AH=10cm . Khi đó, độ dài MN là
A.9cm B.10cm C.6cm D.8cm
Cho hình thang cân ABCD ( AB//CD ) có E và F lần lượt là trung điểm hai đáy AB và CD. Chứng minh EF vuông góc với AB.
Cho hình thang cân ABCD có đáy AB song song với CD và AB < CD.
a) Gọi I là giao điểm của hai đường chéo hình thang ABCD. Chứng minh
IA = IB, IC = ID.
b) Tia DA và tia CB cắt nhau tại O. Chứng minh OI vừa là đường trung
trực của đoạn AB vừa là đường trung trực của đoạn CD.
c) Tính các góc của hình thang ABCD nếu góc ABC - ADC = 180 độ.
Cho hình thang cân ABCD (AB //CD) , AC và BD cắt nhau tại I .
a) Chứng minh ABD = ABC.
b) Gọi M là trung điểm AB . Chứng minh IM vuông góc với AB .
c) Gọi N là trung điểm CD. Chứng minh rằng ba điểm I, M, N là ba điểm
thẳng hàng