1. Cho tam giác ABC vuông tại A, phân giác BD. Gọi M,N,E lần lượt là trung điểm của BD, BC và DC.
a. C/m: MNED là hình bình hành
b. C/m: AMNE là hình thang cân
c. Tìm điều kiện của tam gáic ABC để MNED là hình thoi
2. Cho hình thang cân ABCD (AB//CD) có góc D=45 độ. Vẽ AH vuông góc với CD tại H. Lấy điểm E đối xứng với D qua H
a. C/m: ABCE là hình bình hành
b. Qua D vẽ đường thẳng song song với AE cắt AH tại F. C/m: H là trung điểm của AF
c. AEFD là hình gì ?
cho tam giác ABC vuông ở A, AB=6, AC=8; đường cao AH, phân giác BD. Gọi I là giao điểm của AH và BD.
a) Tính AD, DC.
b) Chứng minh IH*DC=IA*AD
c) Chúng minh AB*BI=BD*HB và tam giác AID cân
Cho tam giác ABC cân tại A , có đường ccao AH . Gọi M là trung điểm của AB , E là điểm đối xứng với H qua M
a ) Chứng minh tứ giác AHBE là hình chữ nhật
b Gọi N là trung điểm của AH . Chứng minh E , N , C thẳng hàng
c ) Cho AH = 8cm , BC =12 cm . Tính diện tích tam giác AMH
d ) Trên tia đối của tia HA lấy điểm F . Kẻ \(HK\perp FC\left(K\in FC\right)\). Gọi I , Q lần luwowtj là trung điểm của H K cà KC . CM : BK vuông góc với FI
Cho tam giác ABC đều, G là trọng tâm của tam giác . Gọi M là 1 điểm bất kỳ thuộc BC, I là trung điểm của AM. Kẻ AH vuông góc với BC. Gọi D và E lần lượt là hình chiếu của MN trên AB và AC
a) Tứ giác DIEH là hình gi? Vì sao?
b) Chứng minh: IH, DE, MG đồng quy
Câu 1 : Cho tam giác ABC cân tại A . GỌi các điểm P,Q,M lần lượt là trung điểm của AB,AC,BC.
1.Chứng minh tứ giác PQCM là hình bình hành
2.TRên tia đối của tia PM lấy điểm N sao cho PM=PN. Chứng minh NB vuông góc với BC
3.Đường thẳng đi qua điểm Q và song song với PC cắt BC tại F. CHứng minh N,Q,F thẳng hàng .
Câu 2:
Tìm giá trị nhỏ nhất của biểu thức \(B=2x^2+4y^2+4x^2y-10x^2-4y+2037\)
cho hình chữ ngật ABCD có AB=3cm, BC=3cm
a) Tính BD
b) Qua B, vẽ đường thẳng vuông góc với BD cắt đường thẳng DC tại E. Vẽ CF vuông góc với BE tại F. Chứng minh: tam giác BCD đồng dạng tam giác CFB. Tính CF
c) Gọi O là giao điểm của AC và BD. Nối EO cắt CF tại I và cắt BC tại K. Chứng minh: I là trung điểm của CF
d) chứng minh: D,K, F thẳng hàng
3. CHo tam giác ABC (AB<AC), đường cao AK. Gọi D, E, F lần lượt là trung điểm của AB, AC< BC
a. BDEF là hình gì ?
b. c/m: DEFK là hình thang cân
c. Gọi H là trực tâm của tam giác ABC. Gọi M, N, P lần lượt là trung điểm của HA< HB< HC. C/m: MF=NE=PD và cắt nhau tại trung điểm của mỗi đoạn