vecto IM+vecto IN
=1/2(vecto IA+vecto IB+vecto IC+vecto ID)
=vecto 0
=>M,N,I thẳng hàng
vecto IM+vecto IN
=1/2(vecto IA+vecto IB+vecto IC+vecto ID)
=vecto 0
=>M,N,I thẳng hàng
1. Cho hbh ABCD. Đặt vecto AB=a, AD=b. Gọi I là trung điểm của CD, G là trọng tâm của tam giác BCI. Phân tích các vecto BI, CG theo vecto a,b
2. Cho tam giác ABC có trọng tâm G. Gọi D là điểm đối xứng của A qua B và E là điểm trên đoạn AC sao cho AE =2/5 AC
a) phân tích vecto DE, DG theo vecto AB và AC
b) cmr D,G,E thẳng hàng
c) xét K là điểm thỏa vecto KA + KB + 3KC = 2KD. CMR KG//CD
Cho tứ giác ABCD, gọi E,F,G,H là trung điểm của AB, BC, CD, DA. M,N là trung điểm của BD, AC và O là trung điểm EG: CM: véc tơ AB+ véc tơ CD = 2 véc tơ NM
1. cho tam giác ABC. gọi I là trung điểm BC, P là điểm đối xứng với A qua B; R là điểm trên cạnh AC sao cho \(AR=\frac{2}{5}AC\) . gọi G là trọng tâm tam giác ABI. CMR P,G,R thẳng hàng
2. cho hbh ABCD. gọi I là trung điểm CD, G là trọng tâm tam giác BCI. đặt \(\overrightarrow{a}=\overrightarrow{AB},\overrightarrow{b}=\overrightarrow{AD}\) . Phân tích \(\overrightarrow{AG}\) theo \(\overrightarrow{AB,}\overrightarrow{AD}\)
Bài 1: Cho lục giác đều ABCDEF tâm O.Hãy tìm các véc tơ khác véc tơ-không có điểm đầu,điểm cuối là đỉnh của lục giác và tâm O sao cho:
a) Bằng với AB(hướng từ A đến B) b)Ngược hướng với OC(hướng từ O đến C)
Bài 2:Cho hình vuông ABCD cạnh a,tâm O và M là trung điểm AB.
Tính độ dài của các véc tơ AB,AC,OA,OM.
Bài 3: Cho tam giác ABC có trọng tâm G.Gọi I là trung điểm của BC.Dựng điểm B' sao cho véc tơ B'B = véc tơ AG.
a) Chứng minh rằng véc tơ BI = véc tơ IC. b)Gọi J là trung điểm của BB'.CMR: véc tơ BJ = véc tơ IG.
Bài 4: Cho hình bình hành ABCD. Trên các đoạn thẳng DC,AB theo thứ tự lấy các điểm M,N sao cho DM = BN.Gọi P là giao điểm của AM,DB và Q là giao điểm của CN,DB. Chứng minh rằng véc tơ AM = véc tơ NC và véc tơ DB = véc tơ QB.
Bài 5: Cho tứ giâc ABCD. Gọi M,N,P,Q lần lượt là trung điểm AB,BC,CD,DA.Chứng minh rằng véc tơ MQ =véc tơ NP.
Bài 6: Cho hình bình hành ABCD. Gọi M,N lần lượt là trung điểm của DC,AB; P là giao điểm của AM,DB và Q là giao điểm của CN,DB.Chứng minh rằng véc tơ DM = véc tơ NB và véc tơ DP = véc tơ PQ = véc tơ QB.
Bài 7: Cho hình thang ABCD có hai đáy là AB và CD với AB = 2CD.Từ C vẽ véc tơ CI = véc tơ DA. Chứng minh rằng:
a) véc tơ AD = véc tơ IC và véc tơ DI = véc tơ CB b) vectơ AI = vectơ IB = vectơ DC
Bài 8:Cho tam giác ABC có trực tâm H và O tâm là đường tròn ngoại tiếp.Gọi B' là điểm đối xứng qua O. Chứng minh vectơ AH = vectơ B'C.
Bài 9: Cho hình vuông ABCD tâm O cạnh a.Gọi M là trung điểm AB,N là điểm đối xứng với C qua D.Hãy tính độ dài của vectơ sau vectơ MD,vectơ MN.
Cho bốn điểm A,B,C,D.Gọi I,J lần lượt là trung điểm của AB và CD
a) chứng minh \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
b)GỌi P,Q là trung điểm của các đoạn thẳng AC và BD; M,N là trung điểm của các đoạn thẳng AD và BC.Chứng minh rằng 3 đoạn thẳng IJ,PQ và MN có chung trung điểm
Cho HCN ABCD tâm O. Gọi M,N lần lượt là trung điểm của OA và CD. Bt \(\overrightarrow{MN}=a.\overrightarrow{AB}+b\overrightarrow{AD}\) . Tính a+b
Cho tam giác ABC, E là trung điểm của AB, F thuộc AC: AF=2FC. Gọi M là trung điểm của BC và I là điểm thỏa mãn 4EI=3FI. Chứng minh A,M,I thẳng hàng