cho tam giác abc với trọng tâm g và i là trung điểm của ac. gọi k thuộc ac sao cho \(\overrightarrow{AK}=x\overrightarrow{AC}\). tìm x để ba điểm b, i, k thẳng hàng
Cho tam giác ABC và M là trung điểm BC.a) Chứng minh rằng: \(\overrightarrow{AM}+\overrightarrow{BC}=\overrightarrow{BM}+\overrightarrow{AC}\)b) Cho hai điểm E,K thỏa mãn: \(\overrightarrow{EA}=-3\overrightarrow{EM}\) và \(5\overrightarrow{AK}=3\overrightarrow{AC}\). Chứng minh ba điểm B,E,K thẳng hàng.
cho tam giác ABC có G là trọng tâm , I là trung điểm của AB . a) phân tích vecto CI và AG theo vecto BA và BC. b) gọi E,F là 2 điểm thỏa : 4 vecto BE- vecto BC = vecto không, vecto FA = m vecto AC . Tìm m để E,F,I thẳng hàng
Cho tam giác ABC. Gọi I là trung điểm cạnh BC; M là trung điểm của BI.
a) Chứng minh rằng: AB+AI+AC=3AI.
Cho tam giác ABC và M,N lần lượt là trung điểm AB,AC. Gọi E,F thỏa mãn \(\overrightarrow{ME}=\frac{1}{3}\overrightarrow{MN};\overrightarrow{BF}=\frac{1}{3}\overrightarrow{BC}\).
Chứng minh A,E,F thẳng hàng.
1. Cho tam giác ABC , M là trung điểm AB , N thuộc cạnh AC sao cho NC=2NA , K là trung điểm MN
a) chứng minh vecto KA=1/4AB+1/6AC
b) gọi D là trung điểm BC chứng minh vecto KD=1/4AB+1/3AC
2. Cho tam giác ABC trung tuyến AM , I là trung điểm AM , K là điểm trên cạnh AC sao cho AK=1/3AC
a) phân tích vecto BI , BK theo vecto a=vecto BA vecto b= vecto BC
b) chứng minh B,I,K thẳng hàng