Giải: Kẻ BH _l_ CD
Tứ Giác ABHD có:
\(\widehat{A}=\widehat{D}=\widehat{BHD}=90^o\)
=> ABHD là hình chữ nhật
=> AB = HD = 4(cm)=> CH = CD - HD = 8-4=4(cm)
và AD = BH = 3(cm)
Áp dụng pitago vào tam giác BCH vuông tại H có: \(BC^2=BH^2+CH^2=3^2+4^2=25\)
\(\Rightarrow BC=5\left(cm\right)\)
Ta có: \(\sin\left(\widehat{C}\right)=\dfrac{BH}{BC}=\dfrac{3}{5}\Rightarrow\widehat{C}=36^o52'11,63"\)
=> \(\widehat{B}=360^o-\widehat{A}-\widehat{D}-\widehat{C}=143^o7'48,37"\)
Vậy......