Cho hình thang ABCD( AB//CD), AC cắt BD ở O .
a, Biết góc C < D.So sánh AC và BD
b, Tìm điều kiện của hình thang ABCD để OC = OD
@Toshiro Kiyoshi
@Trần Đăng Nhất
#cau_hoi_co_loi_giai _hinh_thang.
Cho hình thang ABCD có AB//CD và hai đường chéo vuông góc với nhau \(AC\perp BD\). Biết \(AC=4\), và \(BD=3\).
a) Tính \(AB+CD=?\)
b) Tính độ dài đường cao \(BH=?\) của hình thang ABCD?
Cho hình thang ABCD ( AB//CD) có AC vuông góc BD, AB=5cm, CD=10cm, AC=12cm.
a) Tính BD
b) Tính diện tích ABCD
c)Tính chiều cao của hình thang
Cho hình thang ABCD(AB//CD) và AB<CD, DA cắt CB tại I
a) Chứng minh IAB là tam giác cân
b) Chứng minh tam giác IBD = tam giác IAC
c) AC cắt BD tại K. Chứng minh tam giác KAD = tam giác KBC
d) Chứng minh IK là trục đối xứng của hình thang ABCD
Cho hình thang ABCD (AB CD. AM cắt BD tại E. al Nếu BE=6cm; ED=8cm; DM=10cm. Tính độ dài AB? b/ AC cắt BM ở F. Chứng minh EF//AB. c/ Đường thắng EF cắt AD, BC ở H và K. Chứng minh HF = 2FK.
Cho hình thang cân ABCD có AB // CDvà AB < CD. Kẻđường cao AH, BKcủa hình thang ABCD(H, K thuộc CD).1)Chứng minh tam giác ADH bằng tam giác BCK. 2)Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh OI là trung trực của AB.3)Giảsử2ABCDBK+=.Tính góc tạo bởi hai đường chéo của hình thang.
Cho hình thang cân ABCD có AB // CDvà AB < CD. Kẻđường cao AH, BKcủa hình thang ABCD(H, K thuộc CD).
1)Chứng minh tam giác ADH bằng tam giác BCK.
2)Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh OI là trung trực của AB.
3)Giảsử BK=(AB+CD)/2.Tính góc tạo bởi hai đường chéo của hình thang.
BÀI1, Cho hình thang ABCD(AB//CD) đường thẳng song song với AB cắt AD, BD, AC, BC lần lượt tại M, N, E, F. Chứng minh:MN=EF.
BÀI 2, Cho hình thang ABCD ( AB//CD) AC cắt BD tại O .Đường thẳng đi qua O // AB cắt AD và BC tại M, N. Chứng minh: OM=ON