Cho hình chữ nhật ABCD và AC giao BD tại O. Lấy điểm M bất kì trong đoạn thẳng AB và MO giao CD tại N. Vậy AM + DN = ?
A. AC B. AO C. AD D. AB
Cho hình chữ nhật ABCD(AB>AD). Trên cạnh AD,BC lần lượt lấy M,N sao cho AM=CN
a, C/m :BM//DN
b, gọi O là gtrung điểm của Bd. C/m : AC,BD,MN đồng quy tại O
c, Qua O vẽ d vuông góc vs Bd cắt AB tại P, cắt CD tại Q. C/m :PBQD là hình thoi
d, đường thẳng quau B //PQ và đường thẳng qua Q //BD cắt nhau tại K.C/m AC vuông góc vs CK
Cho hình vuông ABCD cạnh a . Gọi O là giao điểm hai đường chéo AC và BD . Lấy điểm M bất kì trên cạnh AB ( M khác A,B) . Qua A kẻ đường thẳng vuông góc với CM tại H và cắt BC tại K
1.Chứng minh \(KH.KA=KB.KC\) và KM song song với BD
2.Gọi N là trung điểm của BC . Trên tia đối của tia NO lấy điểm E sao cho \(\dfrac{ON}{OE}=\dfrac{\sqrt{2}}{2}\) .Gọi F là giao điểm của DE và OC . Tính \(\dfrac{FO}{FC}\)
3.Gọi P là giao điểm của MC và BD , Q là giao điểm của MD và AC . Đặt AM=x , 0<x<a . Tính diện tích tứ giác CPQD theo x và a . Tìm vị trị của M để diện tích tứ giác CPQD đạt giá trị nhỏ nhất
Cho hình chữ nhật ABCD có AB > AD. Gọi O là giao điểm của hai đường chéo. Kẻ AH vuông góc với BD (H thuộc B).
a, CMR: \(\Delta AHB\sim\Delta ADC\)
b, Trên tia đối của tia CB lấy điểm M sao cho AM cắt BD tại P, CD tại N.
CMR: \(\dfrac{ND}{NC}.\dfrac{MC}{MB}.\dfrac{PB}{PD}=1\)
c, Treen tia BH lấy điểm E sao cho: \(\dfrac{EB}{BH}=\dfrac{CN}{CD}\)
CMR: \(AE\perp NE\)
mK CẦN CHẮC CÂU C thôi.
1. Cho hình thang ABCD(AB//CD) có M là giao điểm của AD và BC, N là giao điểm của hai đg chéo. Gọi I và K theo thứ tự là giao điểm của MN với AB và CD. CMR I là trung điểm của AB, K là trung điểm của CD
2.Cho hình bình hành ABCD, 1 đg thẳng đi qua D cắt AC, AB, CB theo thứ tự ở M, N, K. CMR
a) DM2=MN. MK
b) \(\dfrac{DM}{DN}\) +\(\dfrac{DM}{DK}\)=1
3.cho tam giác ABC lấy ba điểm A' , B', C' thứ tự trên ba cạnh BC, CA, AB của tam giác sao cho ba đg AA' ; BB' ; CC' đồng quy thì \(\dfrac{A'B}{A'C}\).\(\dfrac{B'C}{B'A}\).\(\dfrac{C'A}{C'B}\)=1
4. cho tam giác ABC. 1 dg thẳng d cắt cạnh AB tại D, cắt cạnh AC tại E và cắt đg thẳng BC tại N. Gọi O là giao điểm củ BE và CD. Tia AO cắt BC tại M. CMR 2 điểm M và N CHIA TRONG VÀ CHIA NGOÀI ĐOẠN THẲNG BC theo cùng 1 tỉ lệ
5. cho hình thang ABCD (AB//CD). M là trung điểm của CD. Gọi I là giao điểm của AM và BD, gọi K là giao điểm của BM và AC a) CMR IK//AB b) đg thẳng IK cắt AD, BC theo thứ tự tại E, F. CMR EI=IK=KF
Cho hình chữ nhật ABCD (AB > AD ). Trên cạnh AD, BC lần lượt lấy các điểm M,N so cho AM = CN.
a. Chứng minh rằng BM // DN
b.Gọi O là trung điểm của BD. Chứng minh AC, BD, MN đồng quy tại O
c. Qua O vẽ đường thẳng d vuông góc với BD, d cắt AB tại P, cắt CD tại Q. Chứng minh: Tứ giác PBQD là hình thoi
d. Đường thẳng qua B song song với PQ và đường thẳng qua Q song song với BD cắt nhau tại K. Chứng minh tứ giác OBKQ là hình chữ nhật và BC \(\perp\)Ok
Bài 7: Cho tam giác ABC, AB<AC, phân giác AD, M là trung điểm của BC, ME//AD, E thuộc AC, ME giao AB tại K. Chứng minh:
a) AE=AK
b) BK=CE
Bài 8: Cho đoạn thẳng AB, M thuộc đoạn thẳng AB. Vẽ về một phía của AB các tam giác đều AMC và BMD, AD giao MC tại E, BC giao MD tại F. Chứng minh:
a) Cho MA=a, MB=b. Tính ME, MF theo a,b
b) Tam giác MEF là tam giác gì?
Bài 9: Cho hình thang ABCD (AB//CD), E là trung điểm của AB, AC giao BD tại O, EO giao CD tại F. Chứng minh:
F là trung điểm của CD
Cho hình chữ nhật ABCD. Có O là giao điểm 2 đường chéo AC và BC , Gọi M là TĐ của CD.
a) C/m: AOMD là hình thang vuông.
b) Đường thẳng qua A và song song vs BD cắt đường thẳng OM tại N. C/m tứ giác ANOD là hbh.