a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)
Do đó:ΔAHB\(\sim\)ΔBCD
b: Xét ΔHAB có
R là trung điểm của HA
S là trung điểm của HB
Do đo: RS là đường trung bình
=>RS//AB
Xét ΔHSR vuông tại H và ΔCDB vuông tại C có
\(\widehat{HSR}=\widehat{CDB}\)
Do đó: ΔHSR\(\sim\)ΔCDB
Suy ra: SH/DC=SR/DB
hay \(SH\cdot BD=SR\cdot DC\)