a. Xét tg AHB và tg BCD
AHB^ = C^= 900
ABD^= BDC^ ( so le trong)
=> tam giác AHB đồng dạng với tam giác BCD ( g.g)
mà tam giác ADB đồng dạng với tam giác BCD
=>Tam giác ABD và tam giác HBA đồng dạng
a. Xét tg AHB và tg BCD
AHB^ = C^= 900
ABD^= BDC^ ( so le trong)
=> tam giác AHB đồng dạng với tam giác BCD ( g.g)
mà tam giác ADB đồng dạng với tam giác BCD
=>Tam giác ABD và tam giác HBA đồng dạng
Cho tam giác ABC vuông tại A , biết AB=12cm , AC= 16cm kẻ AH vuông góc với BC ( H thuộc BC)
a. chứng minh tam giác ABC đồng dạng với tam giác HBA
b.tính BC, AH , HB
c. Kẻ đường phân giác BD , tính AD/CD
Cho hình chữ nhật ABCD có AB = 12cm, BC = 9cm. Kẻ AH vuông góc với BD. a) Chứng minh: HBA đồng dạng ABC b) Tính độ cao AH c) Tính dIện tích AHB
1/ cho tam giác ABC có AB = 9cm , BC = 12 cm . Kẻ đường cao AD ( D thuộc BC ) , kẻ đường cao CE ( E thuộc AB )
a/ Chứng minh tam giác ABD đồng dạng với tam giác CBE
b/ Chứng minh AB . BE = BD . BC
c/ Biết BD = 3cm . Tính độ dài đoạn thẳng BE
giúp tớ mai thi r
Cho ∆ABC vuông tại A , có AB=16cm ; BC=20cm . Kẻ đường phân giác BD ( D thuộc AC ) a) Tính CD và AD b) từ C kẻ CH vuông góc BD tại H . CM ∆ABD đồng dạng với ∆HCD c) Tính diện tích ∆HCD
Cho hình chữ nhật ABCD có AB bằng 20 cm BC = 15 cm Kẻ ch vuông góc với BD tại H Chứng minh rằng AD bình bằng BH x BD tính diện tích tam giác bhc
cho tam giác ABC vuông tại A,có đường cao AH,đường phân giác BD.kẻ AI vuông góc BD tại I.AH cắt BD tại E
a)chứng minh:tam giác ABI đống dạng tam giác ABD
b)chứng minh:AB.BE=BD.BH
c)chứng minh:BHI=BDC
d)chứng minh:tam giác AHI cân
giúp mk câu c vớiiiiiiiiii
cho tam giác ABC cân ( góc A < 90 độ) đường cao AH. Trên tia đối của tia BC lấy điểm D sao cho BD = BA. Kẻ BM vuông góc AD ( M thuộc AD)
tam giác AHD đồng dạng với tam giác BMD
DB. DH = DA ^2/2
c, Tia MH cắt tia AC tại N. Chứng minh : tam giác ADB đồng dạng với tam giác NCH và CH = CN