Bài 8: Các trường hợp đồng dạng của tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Khangg Văn

Cho ∆ABC vuông tại A , có AB=16cm ; BC=20cm . Kẻ đường phân giác BD ( D thuộc AC ) a) Tính CD và AD b) từ C kẻ CH vuông góc BD tại H . CM ∆ABD đồng dạng với ∆HCD c) Tính diện tích ∆HCD

Nguyễn Lê Phước Thịnh
4 tháng 3 2023 lúc 22:06

a: \(AC=\sqrt{20^2-16^2}=12\left(cm\right)\)

BD là phân giác

=>AD/AB=CD/BC

=>AD/4=CD/5=(AD+CD)/(4+5)=12/9=4/3

=>AD=16/3cm; CD=20/3cm

b: Xét ΔABD vuông tại A và ΔHCD vuông tại H có

góc ADB=góc HDC

=>ΔABD đồng dạng với ΔHCD

Akai Haruma
4 tháng 3 2023 lúc 22:14

Lời giải:
a. 

Áp dụng định lý Pitago:

$AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-16^2}=12$ (cm)

Áp dụng tính chất tia phân giác:

$\frac{AD}{CD}=\frac{AB}{BC}=\frac{16}{20}=\frac{4}{5}$

$\Rightarrow \frac{AD}{AD+CD}=\frac{4}{9}$

$\Rightarrow \frac{AD}{AC}=\frac{4}{9}\Rightarrow AD=\frac{4}{9}AC=\frac{4}{9}.12=\frac{16}{3}$ (cm)

$CD=AC-AD=12-\frac{16}{3}=\frac{20}{3}$ (cm)

b.

Xét tam giác $ABD$ và $HCD$ có:

$\widehat{BAD}=\widehat{CHD}=90^0$

$\widehat{BDA}=\widehat{CDH}$ (đối đỉnh)

$\Rightarrow \triangle ABD\sim \triangle HCD$ (g.g)

c.

Từ kết quả tam giác đồng dạng phần b suy ra:
$\frac{S_{HCD}}{S_{ABD}}=(\frac{CD}{BD})^2(*)$

Trong đó:

$CD=\frac{20}{3}$

$BD=\sqrt{AB^2+AD^2}=\sqrt{16^2+(\frac{16}{3})^2}=\frac{16\sqrt{10}}{3}(**)$

Từ $(*); (**)\Rightarrow \frac{S_{HCD}}{S_{ABD}}=\frac{5}{32}$

$\Rightarrow S_{HCD}=\frac{5}{32}S_{ABD}=\frac{5}{32}.\frac{AD}{AC}S_{ABC}$
$=\frac{5}{32}.\frac{16}{3.12}.\frac{AB.AC}{2}$

$=\frac{5}{32}.\frac{4}{9}.\frac{16.12}{2}=\frac{20}{3}$ (cm2)

Akai Haruma
4 tháng 3 2023 lúc 22:16

Hình vẽ:


Các câu hỏi tương tự
Bảo Yến Thành
Xem chi tiết
Nguyễn lê trang
Xem chi tiết
ChuVănHuy
Xem chi tiết
123 NGÔ THỊ HIẾU
Xem chi tiết
Khánh Linh Nguyễn
Xem chi tiết
Vũ Nguyễn Hải Vân
Xem chi tiết
Nguyễn Tiến Đạt 8/1
Xem chi tiết
My You
Xem chi tiết
Duy Thúy
Xem chi tiết