Cho hình bình hành ABCD có AD = 2AB, Â = 60 độ. Gọi E và F lần lượt là trung điểm của BC và AD
a) CM: AE vuông góc BF
b) CM tứ giác BFDC là hình thang cân
c) Lấy điểm M đối xứng của A qua B. CM tứ giác BMCD là hình chữ nhật. Suy ra M, E, D thẳng hàng
cho tam giác ABC vuông ở A và M là trung điểm của cạnh BC từ M kẻ MD vuông góc với AB tại D và ME vuông góc với AC tại E
a, cm tứ giá ADME là hình chữ nhật
b, gọi P là điểm đối xứng của D qua M , Q là điểm đối xứng của E qua M .Cm tứ giác DEPQ là hình thoi
c, cm BC =2DC
d, BQ cắt CP tại I .CM ba điểm A,M,E thẳng hàng
cho hình bình hành ABCD có BC = 2AB và góc A = 60 độ . gọi E , F theo thứ tự là trung điểm của BC và AD.
a, tứ giác ECDF là hình gì . vì sao
b, tứ giác ABED là hình gì . vì sao c)gọi m là điểm đối xứng của a qua b.cm:bmcd là hình chữ nhật d)cm: m e d thảng hàng
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH, gọi D là trung điểm của AC, lấy điểm E đối xứng với H qua D.
a) Chứng minh tứ giác AHCE là hình chữ nhật
b) Qua A kẻ AI song song với HE (I ∈ đường thẳng BC). Chứng minh tứ giác AEHI là hình bình hành.
c) Trên tia đối của tia HA lấy điểm K sao cho AH = HK. Chứng minh AK là tia phân giác của góc IAC.
d) Tìm điều kiện của tam giác ABC để tứ giác CAIK là hình vuông, khi đó tứ giác AHCE là hình gì?
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của AC. Gọi D là điểm đối xứng với B qua M.
a) Chứng minh tứ giác ABCD là hình bình hành.
b) Gọi N là điểm đối xứng với B qua A. Chứng minh tứ giác ACDN là hình chữ nhật.
c) Vẽ đường thẳng qua A song song với MN, cắt BC ở K. Chứng minh KC=2KB.
Cho tam giác ABC vuông tại A (AB bé thua AC),có M là trung điểm của cạnh BC ,vẽ MD vuông gốc với AB tại D ,ME vuông gốc với AC tại E
a)cm tứ giác DMAE là hình chữ nhật
b)gọi N là điểm đối xứng của M qua E.Chứng minh tứ giác AMCN là hình thoi
c) biết AB =6cm ,BC=10cm tính diện tích tam giác ABC
d) đường thẳng BE cắt CN tại K chứng minh rằng CK/CN =2/3
ho hình chữ nhật ABCD có O là giao điểm hai đường chéo. Trên đoạn thẳng OB lấy điểm I, gọi E là điểm đối xứng với A qua I.
1. Chứng minh: Tứ giác OIEC là hình thang.
2. Gọi J là trung điểm của CE. Chứng minh: IJ = OC.
3. Đường thẳng IJ cắt BC tại F và cắt tia DC tại H. Chứng minh: tam giác JCH cân.
4. Tứ giác ABCD cần thêm điều kiện gì để tứ giác OIJC là hình chữ nhật.
Cho tam giác ABC có ba góc nhọn (AB<AC), đường cao AH. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC ; MN cắt AH tại I.
a) Chứng minh I là trung điểm của AH.
b) Lấy điểm Q đối xứng với P qua N. Chứng minh tứ giác ABPQ là hình bình hành.
c) Xác định dạng của tứ giác MHPN.
d) Gọi K là trung điểm của MN, O là giao điểm của CK và QP, F là giao điểm của MN và QC. Chứng minh B, O, F thẳng hàng.
Cho tam giác ABC vuông tại A (AB<AC),E là trung điểm của BC.Kẻ EF vuông góc với AB tại F, ED vuông góc với AC tại D. Gọi O là giao điểm của AE và DF
a)Chứng minh tứ giác ADEF là hình chữ nhật
b)Gọi K là điểm đối xứng của E qua D. Chứng minh tứ giác AECK là hình thoi
c)Kẻ EM vuông góc với AK tại M. Chứng minh DM⊥MF
d)Kéo dài BD cắt KC tại I, cho AB=3cm, AC=4cm. Tính độ dài đoạn KI