1/ Cho tứ giác ABCD có \(AC\perp BD\equiv O\). Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Chứng minh rằng:
a. OE + OF + OG + OH bằng nửa chu vi tứ giác ABCD
b. Tứ giác EFGH là hình chữ nhật
Cho tứ giác ABCD có .Gọi E,F,G,H luần lượt là trung điểm của các cạnh AB,BC,CD,DA
CHứng mỉnh rằng a,OE+OF +OG+OH bằng nữa chu vi tứ giác ABCD,'
b,Tứ giác EFGH là hình chữ nhật
Cho hình chữ nhật ABCD. Gọi K, L tương ứng là trung điểm các cạnh BC và DA. Trên cạnh CD kéo dài về phía D lấy điểm M bất kì, đường thẳng ML cắt AC tại N. CMR: \(\dfrac{KM}{KN}=\dfrac{ML}{LN}\)
c) Đường thẳng qua E và song song với BD cắt AD tại I
Đường thẳng qua F và song song với BD cắt BC tại K.
Chứng minh: Các đường thẳng AC, EF và IK cũng đi qua trung điểm O của BD
d) Biết góc AOD = 60o và AD=1cm. Tính OA, OD và diện tích ABCD
Cho tứ giác ABCD có 2 đường chéo vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD và DA. Chứng minh tứ giác MNPQ là hình chữ nhật
mình cần gấp
cho hình vuông ABCD có cạnh bằng 1 trên cạnh AB,AD lần lượt lấy các điểm P,Q sao cho tam giác APQ có chu vi bằng 2 trên tia đối của DA lấy điểm E saocho DE=PB cmr PQ=BP+QD
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. C/minh tứ giác MNPQ là hình chữ nhật
Cho hình chữ Nhật ABCD. Trên các cạnh AB,BC,CD,DA lần lượt lấy các điểm E,F,G,H sao cho AE/AB=AH/AD=CF/CB=CG/CD.
a)chứng minh EFGH là hình bình hành
b)chứng minh hình bình hành EFGH có chu vi ko đổi
Cho hình chữ Nhật ABCD. Trên các cạnh AB,BC,CD,DA lần lượt lấy các điểm E,F,G,H sao cho AE/AB=AH/AD=CF/CB=CG/CD.
a)chứng minh EFGH là hình bình hành
b)chứng minh hình bình hành EFGH có chu vi ko đổi