a: DB=căn 8^2+6^2=10cm
HD=AD^2/BD=3,6cm
HB=10-3,6=6,4cm
b:
AH=6*8/10=4,8cm
AM=AB^2/AH=8^2/4,8=40/3(cm)
a: DB=căn 8^2+6^2=10cm
HD=AD^2/BD=3,6cm
HB=10-3,6=6,4cm
b:
AH=6*8/10=4,8cm
AM=AB^2/AH=8^2/4,8=40/3(cm)
(ko cần vẽ hình)
Cho tam giác ABC vuông tại A có góc B = 60 độ, đường cao AH.
a) Biết BC = 6cm, hãy tính độ dài các đoạn AB, AC, CH?
b) Trên tia đối của tia BA lấy điểm D sao cho DB=BC, từ A kẻ đường thẳng vuông góc với CD tại K. Chứng minh: \(\dfrac{1}{KD.DC}=\dfrac{1}{AC^2}+\dfrac{1}{AD^2}\)
c) Chứng minh: \(\tan D=\dfrac{DB}{DC}\)
Bài 9: Cho tam giác ABC vuông tại A, đường cao AH = 6cm, HC = 8cm. a/ Tính độ dài HB, BC, AB, AC b/ Kẻ . Tính độ dài HD và diện tích tam giác AHD.
Cho ∆ABC vuông tại A, AH đường cao. Kẻ HD, HE lần lượt vuông góc với AB,AC. Đường thẳng qua A Vuông góc với DE cắt BC tại
Cho \(\Delta\)\(ABC\) có \(\widehat{A}\)\(=90^0\), đường cao AH (H \(\in\) BC), biết BH = 4cm, CH = 9cm. Kẻ HD \(\bot\) AB, HE \(\bot \) AC (D \(\in\) AB, E \(\in\) AC).
b) Các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M và N. Chứng minh M là trung điểm của BH và N là trung điểm của CH.
c) tính diện tích của tứ giác DEMN.
Cho ABC nhon ( AB < AC ) nội tiếp đường tròn (0;R) Hai đường cao BM và CN cắt nhau tai H, AH cắt BC tai D. a) CMR: tứ giác ANHM nội tiếp và AH vuông góc BC tại D. b) CMR AM .AC = AN. AB Nếu BC = 2MN chứng minh góc ACN = 30⁰ c) Kẻ đường kính BK của (O) CMR AH= KC d) CMR H,I,Q thẳng hàng biết AQ là đường kính của (O) I là trung điểm của BC
Mn ơi giúp mik vs mik cần hình và loi giai đầy đủ ạ.Mình cảm ơn <3
Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Chứng minh tứ giác BEFC nội tiếp
c) Gọi I là trung điểm của BC
Bài 1: Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Kẻ đường cao AH
a) Giải tam giác vuông ABC (góc làm tròn đến phút).
b) Gọi G, K là hình chiếu của H lần lượt lên AB và AC. Chứng minh rằng: AG.AB=AK.AC
Bài 2: Cho vuông tại A, đường cao AH có , đường cao AH có HB=9cm,HC=16cm
a) Tính AB, AC và AH.
b) Hạ HD vuông góc AB,HE vuông góc AC . Tính chu vi và diện tích tứ giác ADHE.
Cho ABC nội tiếp đường tròn (O; R) đường kính BC (AB< AC). Các tiếp tuyến tại A và C của đường tròn (O) cắt nhau tại N, ON cắt AC tại K
a/ Chứng minh rằng ON vuông góc AC tại K và AN.AB = AK.BC.
b/ Gọi I là trung điểm của AB kẻ AH vuông góc BC tại H. Chứng minh rằng 5 điểm A, I, H, O, K cùng thuộc một đường tròn. Xác định tâm của đường tròn đó.
c/ AH cắt NO tại L, AL cắt (O) tại điểm P (khác A), tia KL cắt (O) tại M. Chứng minh tứ giác ALCN là hình thoi và LP. LC = R²- OL²
Cho ABC có ba góc nhọn nội tiếp đường tròn tâm O (AB < AC) và AH là đường cao của tam giác. Gọi M, N lần lượt là hình chiếu vuông góc của H lên AB, AC. Kẻ NE vuông góc với AH. Đường thẳng vuông góc với AC kẻ từ C cắt tia AH tại D và AD cắt đường tròn tại F. Chứng minh :
a) ABC + ACB = BIC và tứ giác DENC nội tiếp;
b) AM.AB = AN.AC và tứ giác BFIC là hình thang cân;
c) Tứ giác BMED nội tiếp.