a,Xét tam giác ABC vuông tại B có ;
\(AB^2+BC^2=AC^2\) ( Định lí Pytago )
<=> 25 + 144 = \(AC^2\)
<=> \(AC^2\) = 169
<=> AC = 13 (cm)
Ta có : sin \(\widehat{A}=\frac{BC}{AC}=\frac{12}{13}\)
=> \(\widehat{A}\approx67^o\)
Xét tam giác ABC có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
=> \(\widehat{C}=180^o-67^o-90^o\) = \(23^o\)
b,Xét tam giác ABC vuông tại B có đường cao BH :
+) AB.BC = BH.AC (hệ thức lượng)
<=> 5.12 = 13.BH
<=> BH = \(\frac{60}{13}\) \(\approx\) 4,6 cm
+) \(BC^2=HC.AC\)
<=> 144 = 13.HC
<=> HC = \(\frac{144}{13}\) cm
Xét tam giác ABC có BM là đường phân giác góc ABC :
=> \(\frac{AB}{CB}=\frac{AM}{CM}\) (tính chất đường phân giác trong tam giác )
<=> \(\frac{5}{12}=\frac{AM}{CM}\)
=> CM = \(\frac{13.12}{12+5}=\frac{156}{17}\) cm
=> HM = HC - CM = \(\frac{144}{13}-\frac{156}{17}=\frac{420}{221}\) \(\approx\) 1,9 cm
Xét tam giác BHM vuông tại H có :
\(BH^2+HM^2=BM^2\)
=> BM\(^2\) = 24,77
=> BM \(\approx\) 5 cm
c,Xét tam giác ABC vuông tại B đường cao BH có :
AB\(^2\) = AH.AC (hệ thức lượng)
Xét tam giác ABK vuông tại A đường cao AH có :
AB\(^2\) = BH.BK ( hệ thức lượng )
=> AH.AC = BH.BK ( = AB\(^2\))