Lời giải:a) Vì $ABCD$ là hình chữ nhật nên $AB=CD$
$\Rightarrow \frac{AB}{2}=\frac{CD}{2}$$\Leftrightarrow AE=DF$
$AB\parallel CD\Rightarrow AE\parallel DF$
Như vậy, tứ giác $ADFE$ hai cạnh đối $AE, DF$ song song và bằng nhau nên $ADFE$ là hình bình hành.
Mà $\widehat{D}=90^0$ nên $ADFE$ là hình chữ nhật.
Hình chữ nhật $ADFE$ có 2 cạnh kề $AD=\frac{AB}{2}=AE$ nên $ADFE$ là hình vuông.
b)
Vì $ADFE$ là hình vuông nên $AD\perp AF\Rightarrow \widehat{EMF}=90^0$. Đồng thời, $\widehat{DEF}=45^0$
Tương tự: $EBCF$ cũng là hình vuông $\Rightarrow \widehat{ENF}=90^0; \widehat{FEC}=45^0$
Từ đây suy ra $\widehat{MEN}=\widehat{DEF}+\widehat{FEC}=90^0=\widehat{EMF}=\widehat{ENF}=90^0$ nên tứ giác $EMFN$ là hình chữ nhật.
Mặt khác: Vì $AEDF, BEFC$ là 2 hình vuông bằng nhau (do $AE=EB$) nên đường chéo $ED=EC\Rightarrow EM=EN$
Hình chữ nhật $EMFN$ có 2 cạnh kề $EM=EN$ nên $EMFN$ là hình vuông.