a: Xét tứ giác ADFE có
AE//DF
AE=DF
Do đó: ADFE là hình bình hành
mà AE=AD
nên ADFE là hình thoi
mà \(\widehat{EAD}=90^0\)
nên ADFE là hình vuông
b: Ta có: ADFE là hình vuông
nên \(\widehat{EFD}=90^0\) và AF vuông góc với DE tại trung điểm của mỗi đường
Xét tứ giác BEFC có
BE//FC
BE=FC
Do đó: BEFC là hình bình hành
mà BC=BE
nên BEFC là hình thoi
mà \(\widehat{EBC}=90^0\)
nên BEFC là hình vuông
=>EC vuông góc với BF tại trung điểm của mỗi đường
Xét ΔEDC có
EF là đường trung tuyến
EF=DC/2
Do đó: ΔEDC vuông tại E
Xét ΔEDC có
EF là đường cao
EF là đường trung tuyến
DO đó: ΔEDC cân tại E
=>ED=EC
=>EM=EN
Xét tứ giác EMFN có \(\widehat{EMF}=\widehat{ENF}=\widehat{MEN}=90^0\)
nên EMFN là hình chữ nhật
mà EM=EN
nên EMFN là hình vuông