\(\overrightarrow{SA}.\overrightarrow{CD}=\overrightarrow{SA}.\overrightarrow{BA}=\overrightarrow{AS}.\overrightarrow{AB}=a.a.cos60^0=\dfrac{a^2}{2}\)
\(\overrightarrow{SA}.\overrightarrow{CD}=\overrightarrow{SA}.\overrightarrow{BA}=\overrightarrow{AS}.\overrightarrow{AB}=a.a.cos60^0=\dfrac{a^2}{2}\)
Cho hình chóp tứ giác S.ABCD có đáy là một hình vuông, độ dài tất cả các cạnh của hình chóp đã cho bằng a. Tính tích vô hướng \(\overrightarrow{SA}.\overrightarrow{SC}\)
Cho hình hộp ABCD.A'B'C'D' có các cạnh đều bằng a , \(\stackrel\frown{ABC}=60^{\cdot}\) . Tính tích vô hướng \(\overrightarrow{AB}.\overrightarrow{C'D'}\) .
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB=a; AD= \(a\sqrt{3}\). Hai tam giác SAB và SAD vuông tại S. Tìm vecto vuông góc \(\overrightarrow{SA}\) ?
Cho tứ diện đều ABCD có các cạnh bằng a, với I và J lần lượt là trung điểm của AB và CD. Tích vô hướng \(\overrightarrow{CI}.\overrightarrow{AJ}\) bằng:
Cho tứ diện đều ABCD có các cạnh bằng a , M là trung điểm AB . Tích vô hướng \(\overrightarrow{CM}.\overrightarrow{DM}\)bằng:
cho tứ diện đều abcd có cạnh bằng a. tính \(\overrightarrow{AB}.\overrightarrow{BD}\)
Cho hình lăng trị tứ giác ABC.A'B'C'D'. Mặt phẳng (P) cắt các cạnh bên AA', BB',CC', DD' lần lượt tại I, K, L, M. Xét các vectơ có các điểm đầu là các điểm I, K, L, M và có các điểm cuối là các đỉnh của lăng trụ. Hãy chỉ ra các vectơ :
a) Cùng phương với \(\overrightarrow{IA}\)
b) Cùng hướng với \(\overrightarrow{IA}\)
c) Ngược hướng với \(\overrightarrow{IA}\)
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Gọi O và O' theo thứ tự là tâm của hai hình vuông ABCD và A'B'C'D'
a) Hãy biểu diễn các vectơ \(\overrightarrow{AO},\overrightarrow{AO'}\) theo các vectơ có điểm đầu và điểm cuối là các đỉnh của hình lập phương đã cho
b) Chứng minh rằng :
\(\overrightarrow{AD}+\overrightarrow{D'C}+\overrightarrow{D'A'}=\overrightarrow{AB}\)
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a, cạnh bên bằng a√3 . O là tâm hình vuông . Chứng minh (SAC) vuông góc (ABCD) ; (SAC) vuông góc (SBD)