Cho hình chóp SABCD, có đáy là hình thang vuông tại A, B, AD = 2BC = 2AB = 2a; SA vuông với đáy, SA = 2a. Gọi I, J lần lượt là trung điểm AD, SD
a) Tính góc giữa SB và (SCD)
b) Tính góc giữa SB và (SCI)
Cho hình chóp S.ABCD, ABCD là hình chữ nhật. AB=a AD = a căn 3, SA =a. SA vuông góc với đáy. M,N lần lượt là trung điểm AD và SC. BM giao AC tại I
a) CM (SAC) vuông (SMB)
b) tính khoáng cách SB và CD. Tính diện tích tam giác NID
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, đáy lớn BC=2a, AB=AD=a, SB vuông góc (ABCD), SB= a√3 a. CM ∆SAD vuông b. CM DC vuông góc (SBD) c. Gọi O là giao điểm của AC và BD, (alpha) là mp qua O và vuông góc với AB. Tìm và tính thiết diện của hình chóp cắt bởi (alpha)
Giúp mình với mn ơi huhu
Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh bằng a√2; SA vuông góc (ABCD) và SA=2a . Gọi E là hình chiếu vuông góc của A trên cạnh SB .
4.1. Chứng minh BD ⊥ (SAC) .
4.2. Chứng minh BC ⊥ (SAB) và (AEC) ⊥ (SBC) .
4.3. Gọi G và K lần lượt là trọng tâm của các tam giác SAD và ACD Tính góc giữa đường thẳng GK và mặt phẳng (SAB) .
Cho S.ABCD có đáy hình thang vuông tại A và B, AD=2a, AB= BC = a, SA vuông góc với mặt phẳng đáy. Biết SC tạo với mặt phẳng đáy một góc bằng 60o. Tính góc giữa SD và mặt phẳng (SAC)?
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc vs mặt đáy, SA=a căn 3. Gọi O là giao điểm của BD và AC 1. CMR: CD vuông góc ( SAD) 2. CMR: SO vuông góc BD 3.xác định và tính góc giữa SO và mp( ABCD)
Câu 5: Cho hình chóp tứ giác đều S.ABCD, có đáy ABCD là hình vuông tâm O cạnh bằng a, góc giữa cạnh bên và mặt đáy 1 góc 60°. Gọi IE lần lượt là là trung điểm của cạnh BC,CD a)Chứng minh: AC vuông góc (SBD) ; BD vuông góc SA b)Chứng minh: (SBC) vuông góc (SOI) c)Tính góc giữa mặt bên và mặt đáy. d)góc giữa OE và mặt (SCD) e)Tính khoảng cách giữa SI và AB.
Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), SA= 2a√3, đáy ABC vuông tại A, AC=2a, BC=4a. Gọi M là trung điểm BC. Tính khoảng cách từ M đến (SAC)
Cho hình chóp S.ABC có tam giác ABC vuông tại A, góc ABC=60 , SB=AB=a , hai mặt bên (SAB) và (SBC) cùng vuông góc với mặt đáy . Gọi H,K lần lượt là hình chiếu vuông góc của B trên SA,SC .
1. Chứng minh : SB\(\perp\) (ABC) và SC \(\perp\) (BHK) .
2. TÍnh góc tạo bởi SA và (BHK) .