Qua H kẻ đường thẳng song song AB cắt BC tại M
\(\Rightarrow BC\perp\left(SHM\right)\)
Trong mp (SHM), từ H kẻ \(HK\perp SM\Rightarrow HK\perp\left(SBC\right)\)
\(\Rightarrow\widehat{HCK}\) là góc giữa AC và (SBC) (do H nằm trên AC)
\(\dfrac{MH}{AB}=\dfrac{CH}{AC}=\dfrac{3}{4}\Rightarrow MH=\dfrac{3x}{4}\)
\(\dfrac{1}{HK^2}=\dfrac{1}{SH^2}+\dfrac{1}{HM^2}\Rightarrow HK=\dfrac{SH.MH}{\sqrt{SH^2+MH^2}}=\dfrac{3x}{5}\)
\(HC=\dfrac{3}{4}AC=\dfrac{3x\sqrt{2}}{4}\)
\(sin\widehat{HCK}=\dfrac{HK}{HC}=\dfrac{2\sqrt{2}}{5}\Rightarrow\widehat{HCK}\approx34^027'\)