Do \(AO\) cắt (SBC) tại C mà \(AC=2OC\Rightarrow d\left(A;\left(SBC\right)\right)=2d\left(O;\left(SBC\right)\right)\)
Từ A kẻ \(AH\perp SB\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH=d\left(A;\left(SBC\right)\right)\)
\(\frac{1}{AH^2}=\frac{1}{SA^2}+\frac{1}{AB^2}\Rightarrow AH=\frac{SA.AB}{\sqrt{SA^2+AB^2}}=\frac{2a\sqrt{5}}{5}\)
\(\Rightarrow d\left(O;\left(SBC\right)\right)=\frac{a\sqrt{5}}{5}\)