trong mặt phẳng tọa độ oxy, cho hình vuông abcd có cạnh bằng 2. gọi m,n lần lượt là trung điểm của đoạn thẳng ab và c. trên đoạn mn lấy điểm h sao cho hm=3hn. lấy điểm i thuộc dường thẳng cd sao cho bi vuông góc với ah. biết c(1;1), d(5;3). tìm tọa độ điểm i
Cho hình thang ABCD(AB//CD, AB<CD). M là điểm thay đổi trên cạnh AB(M khác A và B). Gọi s là giao điểm của hai đường thẳng chứa hai cạnh bên của hình thang ABCD. Các tia CM và DM lần lượt cắt SD, SC tại E và F.
Chứng minh rằng biểu thức \(\dfrac{SE}{E\text{D}}+\dfrac{SF}{FC}\)có giá trị không đổi khi M thay đổi
Trên hệ trục tọa độ Oxy, cho hình vuông ABCD. Gọi M là 1 điểm thuộc đoạn thẳng CD sao cho \(\overrightarrow{MC}=2.\overrightarrow{DM}\). Gọi N là trung điểm của đoạn thẳng BC và tọa độ của N là: \(N\left(0;2019\right)\).
Gọi K là giao điểm của 2 đường thẳng AM và BD. Biết đường thẳng AM có phương trình là : \(x-10y+2018=0\). Tính khoảng cách từ gốc tọa độ O đến đường thẳng NK ?
P/s: Em xin phép nhờ quý thầy cô và các bạn giúp đỡ bài toán trong đề cương của trường THPT Việt Nam -- Ba Lan ( Thành phố Hà Nội )
Bài 3. Cho tam giác ABC, điểm P nằm trong ΔABC. Gọi B, C, lần lượt là điểm đối xứng với P qua AC, AB; E, F lần lượt là hình chiếu vuông góc của P trên AC, AB. Đường tròn đường kính AP cắt đường tròn (AB'C') tại Q(Q≠A) .Chứng minh rằng PEQF là tứ giác điều hòa
Trong mặt phẳng tọa độ Oxy, cho elip (E) : \(\dfrac{x^2}{4}+y^2=1\) và điểm \(A\left(-1;\dfrac{1}{2}\right)\). Gọi d là đường thẳng đi qua A có hệ số góc là m. Xác định m để d cắt (E) tại hai điểm phân biệt M, N sao cho A là trung điểm của MN ?
Trong mặt phẳng Oxy, cho đường tròn (C): x2+y2-2x-2y-14=0 và điểm A(2;0). Gọi I là tâm của (C). Viết pt đường thẳng đi qua A và cắt (C) tại hai điểm M, N sao cho tam giác IMN có diện tích lớn nhất.
Trong mặt phẳng Oxy cho tam giác ABC, biết đỉnh A(1; 1) và tọa đọ trọng tâm G (1; 2). Cạnh AC và đường trung trục của nó lần lượt có phương trình là \(x+y-2=0\) và \(-x+y-2=0\). Các điểm M và N lần lượt là trung điểm của BC và AC
a) Hãy tìm tọa độ các điểm M và N
b) Viết phương trình hai đường thẳng chứa hai cạnh AB và BC
Cho tam giác ABC nhọn và G là điểm bất kỳ trong tam giác ABC; qua G vẽ các tia vuông góc với BC' CA' AB lần lượt cắt các cạnh đó tại D, E, F. Trên các tia GD, GE, GF lấy các điểm A', B', C' sao cho GA'/BC = GB'/AC = GC'/AB. Gọi H là điểm đối xứng A' qua G
a. CM HB' song song GC'
b. CM G là trọng tâm tam giác A'B'C'
Cho tam giác ABC nhọn và G là điểm bất kỳ trong tam giác ABC; qua G vẽ các tia vuông góc với BC' CA' AB lần lượt cắt các cạnh đó tại D, E, F. Trên các tia GD, GE, GF lấy các điểm A', B', C' sao cho GA'/BC = GB'/AC = GC'/AB. Gọi H là điểm đối xứng A' qua G
a. CM HB' song song GC'
b. CM G là trọng tâm tam giác A'B'C'