Lời giải:
Vì \(SA\perp (ABCD)\Rightarrow (SC,(ABCD))=(SC,AC)=\widehat{SCA}\)
Do đó:\(\widehat{SCA}=45^0\)
Áp dụng định lý Pitago:
\(AC=\sqrt{AB^2+BC^2}=\sqrt{AB^2+AD^2}=\sqrt{a^2+2a^2}=\sqrt{3}a\)
\(\frac{SA}{AC}=\tan \widehat{SCA}=\tan 45^0=1\)
\(\Rightarrow SA=AC=\sqrt{3}a\)
Do đó:
\(V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}.\sqrt{3}a.AB.AD=\frac{1}{3}.\sqrt{3}a.a.a\sqrt{2}=\frac{\sqrt{6}}{3}a^3\)