Chương 2: ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. QUAN HỆ SONG SONG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hằng hồ thị hằng

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi G là điểm thuộc SO sao cho SG=2GO. Qua G dựng đường thẳng song song SA, đường thẳng này cắt SC tại M; cắt (ABC) tại N. Gọi K là trọng tâm tam giác SAD.

1. Chứng minh KG song song với AB.

2. Chứng minh KN song song với SB.

3. Tìm thiết diện của hình chóp tạo bởi (MNK). Chứng minh thiết diện là hình thang.

Mng giúp mình với ạ, mình cần gấp!!! Mình cảm ơn nhiều!!!

Nguyễn Việt Lâm
18 tháng 10 2020 lúc 4:47

Gọi P là trung điểm AD \(\Rightarrow\frac{SK}{SP}=\frac{2}{3}\)

OP là đường trung bình tam giác ABD \(\Rightarrow OP//AB\)

\(SG=2GO\Rightarrow\frac{SG}{SO}=\frac{2}{3}\Rightarrow\frac{SG}{SO}=\frac{SK}{SP}\Rightarrow KG//OP\) (Talet đảo)

\(\Rightarrow KG//AB\)

b/ \(G\in\left(SAC\right)\Rightarrow N\in\left(SAC\right)\Rightarrow N\in SC\)

\(GN//SA\Rightarrow\frac{AN}{OA}=\frac{SG}{SO}=\frac{2}{3}\)

Mà O là trung điểm BD \(\Rightarrow\) N là trọng tâm tam giác ABD

\(\Rightarrow B;N;P\) thẳng hàng đồng thời \(\frac{BN}{BP}=\frac{2}{3}\) (t/c trọng tâm)

\(\Rightarrow\frac{SK}{SP}=\frac{BN}{BP}=\frac{2}{3}\Rightarrow KN//SB\) (Talet đảo)

c/ Qua K kẻ đường thẳng song song SA lần lượt cắt AD và SD tại E và F

Trong mp (ABCD), nối EN kéo dài cắt BC tại Q

Tứ giác MQEF là thiết diện của (MNK) và chóp

Khách vãng lai đã xóa

Các câu hỏi tương tự
camcon
Xem chi tiết
bao Le
Xem chi tiết
Đỗ Thành Minh
Xem chi tiết
Scarlett
Xem chi tiết
Nguyễn Thu Trang
Xem chi tiết
NGUYỄN MINH HUY
Xem chi tiết
Kim Son Nguyen
Xem chi tiết
Big City Boy
Xem chi tiết
Vũ Minh Anh
Xem chi tiết