Cho hình chóp S.ABCD có ABCD là hình thoi cạnh a, SAB là tam giác vuông tại A với SA =a. Gọi M là một điểm thay đổi trên cạnh AD, đặt AM=x(0<x<a) .Mp (a) qua M và song song CD và SA
a)Dựng thiết diện của hình chóp với mặt phẳng (a), thiết diện là hình gì? b)Tính diện tích thiết diện theo a và x
Cho hình chóp S. ABCD có đáy là hình vuông cạnh a, SA = SB = SC = SD = a. Trên cạnh SA lấy M sao cho MS = 2MA. Tính diện tích thiết diện của hình chóp khi cắt bởi mặt phẳng qua C, M song song với BD
Cho hình chóp S.ABCD có ABCD là hình bình hành tâm O. Gọi M là trung điểm cạnh SA và (a) là mặt phẳng chứa OM song song với AD. Gọi N,P,Q lần lượt là giao điểm của (a) với các cạnh SD, CD và AB.
1/ Thiết diện của (a) với hình chóp là gì?
2/ Chứng minh SB // (a).
3/ Giả sử SBC là tam giác đều. Tính số đo các góc của tứ giác MNPQ.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G là trọng tâm của tam giác SAD và M là điểm thuộc cạnh BC sao cho GM// (SCD). Khi đó tỉ số diện tích của hai tam giác MAB và MAC là
cho hình chóp S.ABCD có đáy ABCD là hình bình hành .Gọi O là giao điểm của AC và BD .M và N lần lượt là trung điểm của CD và SA . G là trọng tâm tam giác SAB .Gọi \(\Delta\) là giao tuyến của 2 mặt phẳng (SAD) và (SMG),P là giao điểm của đường thẳng OG và \(\Delta\) .Chứng minh P,N ,D thẳng hàng
Cho tứ diện ABCD. I và J theo thứ tự là trung điểm của AD và AC, G là trọng tâm tam giác BCD. Xác định giao tuyến của hai mặt phẳng (GID) và (BCD). Tìm thiết diện của mặt phẳng (GIJ) với hình chóp ABCD. Thiết diện là hình gì
Cho hình chóp S.ABCD với ABCD là hình thoi cạnh a. SAD là tam giác đều. Gọi M là một điểm thuộc cạnh AB, AM = x, (P) là mặt phẳng qua M // với (SAD). Tính diện tích thiết diện hình chóp cắt bởi mp (P).
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi G là trọng tâm của tam giác SAB; I và M lần lượt là trung điểm của AB và SD.
a) Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD)
b) Gọi N là giao điểm DI và AC. Chứng minh rằng NG song song với (SCD)
c)Tìm giao điểm E của SO và (CGM). Tính tỉ số \(\frac{SE}{SO}\)
Cho hình chóp S.ABCD đáy là hình thang, đáy lớn BC = 2a, AD = a, AB = b. Mặt bên (SAD) là tam giác đều. Mặt phẳng \(\left(\alpha\right)\) qua điểm M trên cạnh AB và song song SA,BC. \(\left(\alpha\right)\) cắt CD,SC,SB lần lượt tại N,P,Q. Đặt AM = x(0<x<b). GTLN của diện tích thiết diện tạo bởi \(\left(\alpha\right)\) và hình chóp S.ABCD là