Chương 2: ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. QUAN HỆ SONG SONG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
camcon

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G là trọng tâm của tam giác SAD và M là điểm thuộc cạnh BC sao cho GM// (SCD). Khi đó tỉ số diện tích của hai tam giác MAB và MAC là 

Gọi F là trung điểm SD \(\Rightarrow\dfrac{GF}{GA}=\dfrac{1}{2}\) theo t/c trọng tâm

Trong mp (SAD), qua G kẻ đường thẳng song song SD cắt AD tại E

\(\Rightarrow GE||SD\Rightarrow GE||\left(SCD\right)\)

\(\left\{{}\begin{matrix}GM||\left(SCD\right)\\GE||\left(SCD\right)\end{matrix}\right.\) \(\Rightarrow\left(GME\right)||\left(SCD\right)\Rightarrow ME||\left(SCD\right)\Rightarrow ME||CD\)

\(\Rightarrow CDEM\) là hình bình hành (2 cặp cạnh đối song song)

\(\Rightarrow MC=ED\Rightarrow MB=EA\)

Áp dụng định lý Talet trong tam giác ADF: \(\dfrac{ED}{EA}=\dfrac{GF}{GA}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{MC}{MB}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{S_{MAB}}{S_{MAC}}=\dfrac{MB}{MC}=2\)

loading...


Các câu hỏi tương tự
camcon
Xem chi tiết
NGUYỄN MINH HUY
Xem chi tiết
Lê Hải Yến
Xem chi tiết
Linh Lê
Xem chi tiết
Trúc Thuy
Xem chi tiết
Lê Hải Yến
Xem chi tiết
nguyen ngoc son
Xem chi tiết
camcon
Xem chi tiết
Azaki
Xem chi tiết