a.
O là trung điểm BD, N là trung điểm CD
\(\Rightarrow\) ON là đường trung bình tam giác BCD
\(\Rightarrow ON||BC\Rightarrow ON||\left(SBC\right)\)
Tương tự ta có OM là đtb tam giác SAC \(\Rightarrow OM||SC\Rightarrow OM||\left(SBC\right)\)
\(\Rightarrow\left(OMN\right)||\left(SBC\right)\)
b.
Trong mp (SCD), qua E kẻ đường thẳng song song SD cắt SC tại G
\(\Rightarrow EG||SD\Rightarrow EG||\left(SAD\right)\) (1)
Theo định lý Talet: \(\dfrac{EC}{ED}=\dfrac{GC}{GS}\)
Mặt khác AE là phân giác của ACD nên theo định lý phân giác: \(\dfrac{EC}{ED}=\dfrac{AC}{AD}\)
Mà ABC cân tại A \(\Rightarrow AB=AC\); SAD cân tại A \(\Rightarrow AD=SA\)
\(\Rightarrow\dfrac{GC}{GS}=\dfrac{EC}{ED}=\dfrac{AC}{AD}=\dfrac{AB}{SA}\)
AF là phân giác nên áp dụng định lý phân giác:
\(\dfrac{FB}{FS}=\dfrac{AB}{SA}\) \(\Rightarrow\dfrac{FB}{FS}=\dfrac{GC}{GS}\Rightarrow FG||BC\) (Talet đảo)
\(\Rightarrow FG||AD\Rightarrow FG||\left(SAD\right)\) (2)
(1);(2) \(\Rightarrow\left(EFG\right)||\left(SAD\right)\Rightarrow EF||\left(SAD\right)\)