Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi G là trọng tâm của tam giác SAB; I và M lần lượt là trung điểm của AB và SD.
a) Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD)
b) Gọi N là giao điểm DI và AC. Chứng minh rằng NG song song với (SCD)
c)Tìm giao điểm E của SO và (CGM). Tính tỉ số \(\frac{SE}{SO}\)
cho hình chóp S.ABCD có đáy ABCD là hình bình hành .Gọi O là giao điểm của AC và BD .M và N lần lượt là trung điểm của CD và SA . G là trọng tâm tam giác SAB .Gọi \(\Delta\) là giao tuyến của 2 mặt phẳng (SAD) và (SMG),P là giao điểm của đường thẳng OG và \(\Delta\) .Chứng minh P,N ,D thẳng hàng
Cho hình chóp SABCD. Đáy ABCD là hình bình hành. M là trọng tâm tam giác SAB, N là trung điểm SD.
a) Tìm giao tuyến của (SAC) và (SBD).
b) Tìm giao tuyến của (SAD) và (SBC).
c) Tìm giao điểm của MN và (ABCD). d) Tìm I là giao điểm của SM và (ABCD).
e) F là giao điểm của CI và BD. Chứng minh rằng: MF// (SAD).
Cho hình Chóp S.ABCD có đáy là hình thang, đáy lớn AB. Gọi O là giao điểm của AC và BD
a. Tìm giao tuyến của hai mặt phẳng (SAD) và (SAB), (SAB)và (SCD)
b. Trên SC lấy điểm M tùy ý. Tìm giao điểm K của SD và mp (ABM)
c. Tìm thiết diện của hình chóp với mặt phẳng (ABM)
giúp mình với
Cho chóp s abcd có đáy abc là hình bình hành gọi m n p là trung điểm của sa bc cd . o là giao điểm của ac và bc a) tìm giao tuyến của các mặt phẳng (sac) và ( sbd ) , (sad) và (sbc) b) tìm giao điểm của SO và mặt phẳng mnb c) tìm tiết diện của hình chóp cắt bởi mặt phẳng (mnp)
Cho hình bình hành s abcd có đáy abcd là hình bình hành gọi m n p là trung điểm của sa bc cd . o là giao điểm của ac và bc a) tìm giao tuyến của các mặt phẳng (sac) và ( sbd ) , (sad) và (sbc) b) tìm giao điểm của SO và mặt phẳng mnb c) tìm tiết diện của hình chóp cắt bởi mặt phẳng (mnp)
hình chóp S.ABCD có đáy là hình thang ABCD có CD // AB, AB =2CD, M là trung điểm AD, I là trung điểm SC, O là giao điểm AC và BD.
a) Cmr: MI // (SAB)
b) xđ thiết diện của hình chóp S.ABCD bị cắt bởi (MOI)
c) Xđ giao điểm MI với (SBD)