Chương 2: ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. QUAN HỆ SONG SONG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Anh Kim Hân

Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a, H là trung điểm AB, (SH) ⊥ (ABC). Góc đường thẳng SB và mặt phẳng (SAC) bằng 45o. Tính SH?

 

Nguyễn Việt Lâm
1 tháng 3 2021 lúc 19:04

Trong mp (SAB), qua B dựng đường thẳng song song SH, cắt tia AS kéo dài tại D

\(\Rightarrow\) SH là đường trung bình tam giác ABD \(\Rightarrow BD=2SH\) và \(BD\perp\left(ABC\right)\)

Gọi M là trung điểm AC \(\Rightarrow BM\perp AC\Rightarrow AC\perp\left(BDM\right)\)

Trong mp (BDM), kẻ \(BK\perp DM\Rightarrow BK\perp\left(SAC\right)\Rightarrow\widehat{BSK}\) là góc giữa SB và (SAC)

\(\Rightarrow\widehat{BSK}=45^0\Rightarrow SB=BK\sqrt{2}\)

\(\Rightarrow AD=2SA=2SB=2\sqrt{2}BK\Rightarrow BD^2=AD^2-AB^2=8BK^2-4a^2\) (1)

Mặt khác: \(\dfrac{1}{BK^2}=\dfrac{1}{BM^2}+\dfrac{1}{BD^2}\Rightarrow\dfrac{1}{BK^2}-\dfrac{1}{BD^2}=\dfrac{1}{3a^2}\) (2)

(1);(2) \(\Rightarrow\left\{{}\begin{matrix}BD^2=8BK^2-4a^2\\\dfrac{1}{BK^2}-\dfrac{1}{BD^2}=\dfrac{1}{3a^2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{8}{BD^2+4a^2}-\dfrac{1}{BD^2}=\dfrac{1}{3a^2}\Rightarrow BD\Rightarrow SH\)

Sao kết quả xấu vậy nhỉ?


Các câu hỏi tương tự
Nishimiya shouko
Xem chi tiết
Hiền linh
Xem chi tiết
camcon
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Kim Yeon
Xem chi tiết
Pham Tien Dat
Xem chi tiết
camcon
Xem chi tiết
Osiris123
Xem chi tiết
camcon
Xem chi tiết