Bài 5: Khoảng cách

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Tuấn

cho hình chóp SABC có ABC là tam giác đều AB=AC=\(4\sqrt{3}a\) hình chiếu vuông góc của S trùng với trung diểm của BC mặt phẳng (SAB) tạo với đáy 1 góc bằng 60 .Tính khoảng cách từ H đến mặt phảng (SAB) theo a

Nguyễn Việt Lâm
9 tháng 4 2021 lúc 21:57

Gọi M là trung điểm AB là N là trung điểm BM

\(\Rightarrow CM\perp AB\) (trung tuyến đồng thời là đường cao trong tam giác đều)

NH là đường trung bình tam giác BCM \(\Rightarrow NH||CM\Rightarrow NH\perp AB\)

\(\Rightarrow AB\perp\left(SNH\right)\) \(\Rightarrow\left(SAB\right)\perp\left(SNH\right)\) với SN là giao tuyến

Trong mp (SNH), từ H kẻ \(HK\perp SN\Rightarrow HK\perp\left(SAB\right)\Rightarrow HK=d\left(H;\left(SAB\right)\right)\)

\(CM=\dfrac{AC\sqrt{3}}{2}=6a\) ; \(NH=\dfrac{1}{2}CM=3a\)

\(\widehat{SNH}=60^0\Rightarrow HK=NH.sin60^0=\dfrac{3a\sqrt{3}}{2}\)


Các câu hỏi tương tự
Kimian Hajan Ruventaren
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Nguyễn Hải Vân
Xem chi tiết
Jennyle11
Xem chi tiết
Mai Anh
Xem chi tiết
Mai Anh
Xem chi tiết
Nguyễn Hiệp
Xem chi tiết
Hà Mi
Xem chi tiết
Hoàng Loan
Xem chi tiết