Chương 3: VECTƠ TRONG KHÔNG GIAN. QUAN HỆ VUÔNG GÓC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thanh Giang

Cho hình chóp đều S.ABCD, đáy là hình vuông tâm O cạnh a. Gọi M,N lần lượt là lần lượt là trung điểm của  SA,SC. Biết BM vuống góc DN. Tính thể tích hình chóp S.ABCD. 

Em cảm ơn ạ !!!

Nguyễn Việt Lâm
9 tháng 8 2021 lúc 17:40

Gọi O là tâm đáy và G là giao điểm của SO và MN

Do MN là đường trung bình tam giác SAC \(\Rightarrow\) G là trung điểm SO 

\(\overrightarrow{BO}=\dfrac{1}{2}\overrightarrow{BD}\) ; \(\overrightarrow{OG}=\dfrac{1}{2}\overrightarrow{OS}\) ; \(\overrightarrow{GM}=\dfrac{1}{2}\overrightarrow{NM}=\dfrac{1}{4}\overrightarrow{CA}\) ; \(\overrightarrow{GN}=\dfrac{1}{2}\overrightarrow{MN}=\dfrac{1}{4}\overrightarrow{AC}\)

Ta có:

\(\left\{{}\begin{matrix}\overrightarrow{BM}=\overrightarrow{BO}+\overrightarrow{OG}+\overrightarrow{GM}\\\overrightarrow{DN}=\overrightarrow{DO}+\overrightarrow{OG}+\overrightarrow{GN}\end{matrix}\right.\)

\(\overrightarrow{BM}.\overrightarrow{CN}=0\Rightarrow\left(\overrightarrow{BO}+\overrightarrow{OG}+\overrightarrow{GM}\right)\left(\overrightarrow{CO}+\overrightarrow{OG}+\overrightarrow{GN}\right)=0\)

\(\Leftrightarrow\left(\dfrac{1}{2}\overrightarrow{BD}+\dfrac{1}{2}\overrightarrow{OS}+\dfrac{1}{4}\overrightarrow{CA}\right)\left(\dfrac{1}{2}\overrightarrow{DB}+\dfrac{1}{2}\overrightarrow{OS}+\dfrac{1}{4}\overrightarrow{AC}\right)=0\)

\(\Leftrightarrow-\dfrac{1}{4}BD^2+\dfrac{1}{4}OS^2-\dfrac{1}{4}AC^2=0\) (3 vecto \(\overrightarrow{OS};\overrightarrow{BD};\overrightarrow{CA}\) đôi một vuông góc nên tích vô hướng giữa các cặp đều bằng 0)

\(\Leftrightarrow SO^2=2AC^2\Rightarrow SO=AC\sqrt{2}=2a\)

\(V=\dfrac{1}{3}SO.AB^2=\dfrac{2}{3}a^3\)

Nguyễn Việt Lâm
9 tháng 8 2021 lúc 17:41

undefined


Các câu hỏi tương tự
Thiên Yết
Xem chi tiết
vvvvvvvv
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Ha My
Xem chi tiết
Binh Le Huu Thanh
Xem chi tiết
FREESHIP Asistant
Xem chi tiết
Ha My
Xem chi tiết
Nguyễn Ngọc Minh
Xem chi tiết
Ngọc Nhã Uyên Hạ
Xem chi tiết