Bạn tự vẽ hình nhé :3
a) Có ABCD là hình bình hành (giả thiết)
=> AD = BC (tính chất)
=> AD // BC (tính chất) => Góc ADB = Góc CBD (so le trong)
Xét tam giác ADE và tam giác CBF, có:
Góc AED = Góc CFB = 90o (AE⊥BD, CF⊥BD)
AD = BC (chứng minh trên)
Góc ADE = Góc CBF (Góc ADB = Góc CBD)
=> Tam giác ADE = Tam giác CBF (cạnh huyền - góc nhọn)
=> AE = CF (tương ứng)
Có: AE⊥BD, CF⊥BD => AE // CF (tính chất)
Xét tứ giác AECF, có:
AE = CF (chứng minh trên)
AE // CF (chứng minh trên)
=> AECF là hình bình hành
b) Vì ABCD là hình bình hành (giả thiết)
=> AB // CD (tính chất)
Xét tứ giác AICK, có:
AI // CK (AE // CF)
AK // CI (AB // CD)
=> AICK là hình bình hành
=> AI = CK (tính chất)
c) Có ABCD là hình bình hành (giả thiết)
=> AB = CD (tính chất)
=> AD // BC (tính chất) => Góc CDB = Góc ABD (so le trong)
Xét tam giác ABE và tam giác CDF, có:
Góc BEA = Góc DFC (AE⊥BD, CF⊥BD)
AB = CD (chứng minh trên)
Góc ABE = Góc CDF (Góc ABD = Góc CDB)
=> Tam giác ABE = Tam giác CDF (cạnh huyền - góc nhọn)
=> BE = DF (tương ứng)