a: Xét ΔADH vuông tại H và ΔCBK vuông tại K có
AD=CB
\(\widehat{ADH}=\widehat{CBK}\)
Do đó: ΔADH=ΔCBK
Suy ra: AH=CK
Xét tứ giác AHCK có
AH//CK
AH=CK
Do đó: AHCK là hình bình hành
a: Xét ΔADH vuông tại H và ΔCBK vuông tại K có
AD=CB
\(\widehat{ADH}=\widehat{CBK}\)
Do đó: ΔADH=ΔCBK
Suy ra: AH=CK
Xét tứ giác AHCK có
AH//CK
AH=CK
Do đó: AHCK là hình bình hành
Cho ABCD làh hình thang có BD là phân giác góc D và AE là phân giác góc A với E nằm trên CD. Biết AE//BC và O là giao của AE VÀ BD. Chứng minh:
a) AE vuông góc BD
B) AD//BE, AD=BE
C) E LÀ TRUNG ĐIỂM DC
D) TỨ GIÁC BCEO LÀ HÌNH GÌ
E) GÓC BEC = 80o. TÍNH CÁC GÓC CÒN LẠI CỦA TỨ GIÁC ABCD
Cho tam giác ABC cân tại A, AH là đường trung tuyến. Gọi O là trung điểm của cạnh AC a. Chứng minh tứ giác ABOH là hình tháng b. K là điểm đối xứng với H qua O. Chứng minh tứ giác AHCK là hình chữ nhật.
Bài 6. Cho hình thang vuông ABCD có A = D = 90°. Đường chéo BD vuông góc với cạnh bên BC và BD = BC
a) Tính các góc của hình thang.
b) AC là phân giác góc A.
Cho tam giác ABC vuông cân ở A. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, vẽ BD vuông góc với BC và BD = BC.
a)Tứ giác ABCD là hình gì? Vì sao?
b) Biết AB = 5cm. Tính CD?
Cho hình bình hành ABCD, Trên cạnh AB lấy điểm M, trên cạnh CD lấy điểm N sao cho
a, Chứng minh rằng: .
b, Chứng minh tứ giác AMCN là hình bình hành.
c, Chứng minh tứ giác BMDN là hình bình hành
Cho tứ giác A,B,C,D có số đo của các góc A,B,C,D lần lượt tỉ lệ với 1,2,3,4. CMR
a) Tứ giác ABCD là hình thang
b)2 tia phân giác góc A và góc D vuông góc với nhau, 2 tia phân giác góc B và C vuông góc với nhau
Cho tứ giác abcd coa tia phân giác của góc a vuông góc với tia phân giác của góc d chứng minh đó là hình thang
Cho hình thang vuông ABCD vuông tại A và D. Có hai đáy AB song song với CD. Gọi M là trung điểm của đoạn thẳng AD. Điểm P và Q thuộc BC sao cho BP= CQ . Cho biết rằng MQ vuông góc với DP. Chứng minh rằng MP vuông góc với AQ.
Cho tam giác ABC vuông tại A có đường cao AH, AB=6cm,AC=8cm . Gọi D và E lần lượt là hình chiếu vuông góc của H lên AB và AC. Gọi I, K lần lượt là trung điểm của HB, HC.
a) Chứng minh tứ giác ADHE là hình chữ nhật
b) Tính độ dài các đoạn AH, BH, CH
c) Chứng minh tứ giác DEKI là hình thang vuông và tính diện tích.
d) Tính diện tích hình chữ nhật ADHE