Cho hình bình hành ABCD có E, F lần lượt là trung điểm của AB và CD. Gọi giao điểm của AC với DE và BF theo thứ tự là M và N
a) CM: các tứ giác DEBF, EMFN là hình bình hành
b) Hình bình hành ABCD cần thêm điều kiện gì để tứ giác MENF là hình thoi
c) Đường thẳng qua E và song song với BD cắt AD tại I
Đường thẳng qua F và song song với BD cắt BC tại K.
Chứng minh: Các đường thẳng AC, EF và IK cũng đi qua trung điểm O của BD
d) Biết góc AOD = 60o và AD=1cm. Tính OA, OD và diện tích ABCD
Cho hình bình hành ABCD (AC>BD),hình chiếu vuông góc của C lên AB,AD lần lượt là E và F
Chúng minh:1,CE.CD=CB.CF và △ABC đồng dạng △FCE
2,AB.AE+AD.AF=AC2
cho tam giác ABC có E,F,M lần lượt là trung điểm AB,AC,BC I là điểm đối xứng M qua E,K đối xứng M qua F a) chứng minh AEMF là hình bình hành b) ABC có thêm điều kiện gì để AEMF là hình chữ nhật c)chứng minh AMCK là hình bình hành d)tam giác ABC có thêm điều kiện gì để AMCK là hình chữ nhật e)chứng minh EK = BI f)chứng minh A là trung điểm IK
Cho hình bình hành ABCD. Qua A kẻ đường thẳng cắt đường chéo BD, tia đối của tia CB và cạnh DC lần lượt tại E, K, G.
a) Chứng minh: 1/AE=1/AG+1/AK.
b) Khi GC:GD=1:2 hãy tính tỉ số diện tích của tam giác CKG và diện tích hình bình hành ABCD
Cho hình bình hành ABCD. Qua A kẻ đường thẳng cắt đường chéo BD, tia đối của tia CB và cạnh DC lần lượt tại E, K, G.
a) Chứng minh: 1/AE=1/AG+1/AK.
b) Khi GC:GD=1:2 hãy tính tỉ số diện tích của tam giác CKG và diện tích hình bình hành ABCD
Cho hình bình hành ABCD (∠A < ∠B), trong đó có BC = 2AB. Gọi M là TĐ của BC, N là TĐ của AD.
a) C/m: BMDN là hbh.
b) Kẻ DE vuông góc vs AB tại E, DE cắt MN tại F. C/m: F là Tđ của DE.
c) C/m rằng: S Δ ABC = 2 S ΔBEM.
Cho hình bình hành ABCD, E là điểm bất kì trên cạnh AB ( E≠A, E≠B ). Tia DE cắt AC ở F, cắt CB ở G.
a) Chứng minh ∆AEF ∆CDF; ∆AFD ∆CFG.
b) Chứng minh FD2 = FE.FG.
c) Từ F kẻ đường thẳng song song với đường thẳng AB cắt AD tại điểm H. Chứng minh 1:AE+1:AB=1:HF
1. Cho tam giác ABC vuông tại A, phân giác BD. Gọi M,N,E lần lượt là trung điểm của BD, BC và DC.
a. C/m: MNED là hình bình hành
b. C/m: AMNE là hình thang cân
c. Tìm điều kiện của tam gáic ABC để MNED là hình thoi
2. Cho hình thang cân ABCD (AB//CD) có góc D=45 độ. Vẽ AH vuông góc với CD tại H. Lấy điểm E đối xứng với D qua H
a. C/m: ABCE là hình bình hành
b. Qua D vẽ đường thẳng song song với AE cắt AH tại F. C/m: H là trung điểm của AF
c. AEFD là hình gì ?
Cho hình thang cân ABCD có đáy lớn DC = 7cm; góc C = 60độ, BC = 4cm . Độ dài đường trung bình MN của hình thang ABCD là __ cm