Chương III - Hệ hai phương trình bậc nhất hai ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
그녀는 숙이다

Cho hệ phương trình: \(\left\{{}\begin{matrix}x+ay=3\\ax-y=2\end{matrix}\right.\)

a) Giải hệ phương trình khi a = 2

b) Tìm điều kiện của a để hệ phương trình có nghiệm duy nhất thỏa mãn x + y > 0

Dũng Nguyễn
13 tháng 3 2020 lúc 20:46

câu a, dễ bn tự làm

b)

{ x + ay = 3 (1)

{ ax - y = 2 (2)

- Nếu a = 0 thì HPT tương đương:

{ x = 3

{ y = - 2

⇒ x + y = 1 > 0 thỏa . Vậy a = 0 là một nghiệm của bài toán

- Nếu a # 0 thì HPT tương đương:

{ x + ay = 3 (3)

{ a²x - ay = 2a (4) ( Nhân (2) với a)

⇔{ x + ay = 3

{ (a² + 1)x = 2a + 3 ( lấy (3) + (4))

⇔{ y = (3 - x)/a

{ x = (2a + 3)/(a² + 1)

⇔{ y = (3a - 2)/(a² + 1)

{ x = (2a + 3)/(a² + 1)

⇒ x + y = (5a + 1)/(a² + 1) > 0 ⇔ 5a + 1 > 0 ⇔ a > - 1/5

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Thanh Hải
Xem chi tiết
vi lê
Xem chi tiết
vi lê
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Min Suga
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Thanh Hân
Xem chi tiết
Thanh Hân
Xem chi tiết
Huy Jenify
Xem chi tiết
thu dinh
Xem chi tiết