Giải hệ phương trình: \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\)
a) Xác định các giá trị nguyên m để hệ có nghiệm duy nhất (x ; y) sao cho x > 0, y > 0.
b) Tìm giá trị nguyên m để hệ có nghiệm (x ; y) với x ; y là số nguyên dương.
\(\left\{{}\begin{matrix}x+my=3\\x+2y=1\end{matrix}\right.\)
Tìm các giá trị của m để hệ có nghiệm (x;y) thỏa mãn x<0; y>0
Tìm các giá trị của m để hệ có nghiệm (x;y) thỏa mãn x-2y=3
Cho hệ phương trình: \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\)
a) Xác định các giá trị nguyên m để hệ có nghiệm duy nhất (x ; y) sao cho x > 0, y > 0.
b) Tìm giá trị nguyên m để hệ có nghiệm (x ; y) với x ; y là số nguyên dương.
Bài 1
tìm m sao cho hệ phương trình \(\left\{{}\begin{matrix}x+2y=2\\0x-5y=10\end{matrix}\right.\)và \(\left\{{}\begin{matrix}x-y=8\\mx+7y=4\end{matrix}\right.\)tương đương với nhau
Bài 2
cho hệ phương trình \(\left\{{}\begin{matrix}\left(m+1\right)x-y=3\\mx+y=m\end{matrix}\right.\)
a.Giải hệ với \(m=-\sqrt{2}\)
b. tìm m để hệ có nghiệm duy nhất sao cho x+y dương
Bài 3
tìm m để hệ phương trình\(\left\{{}\begin{matrix}2x-y=m-1\\3x+y=4m+1\end{matrix}\right.\)có nghiệm (x;y) thỏa mãn điều kiện x+y >1
Bài 1: Giải hệ phương trình
\(\left\{{}\begin{matrix}\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\sqrt{x-1}-3\sqrt{y+2}=2\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\)
\(\left\{{}\begin{matrix}xy-2x-y+2=0\\3x+y=8\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left|x+1\right|+\left|y-1\right|=5\\\left|x+1\right|-4y=-4\end{matrix}\right.\)
1. CMR: Hệ phương trình luôn có nghiệm với mọi m
2. Tìm m để hệ phương trình có nghiệm x = y.
Bài 2: Cho hệ phương trình
\(\left\{{}\begin{matrix}mx+2y=5\\2x+y=m\end{matrix}\right.\)
1. Giải hệ phương trình với m = 3
2. Tìm m để hệ phương trình có nghiệm duy nhất.
Cho hệ phương trình \(\left\{{}\begin{matrix}3x+y=2m+9\\x+y=5\end{matrix}\right.\)với m là tham số
a.Giải hệ phương trình khi m=-1
b.Tìm các giá trị nguyên của m để hệ phương trình có nghiệm (x;y) thỏa mãn \(x^2+2y^2=18\)
Xét hệ phương trình:
a) CMR với mọi m hệ đều có nghiệm
b) Tìm m để hệ có nghiêm với điều kiện x>0 và y>0
c) Tim m để hệ có nghiệm (x,y) thỏa mãn x=
Cho hệ phương trình:\(\left\{{}\begin{matrix}mx+2y=18\\x-y=-6\end{matrix}\right.\) (m là tham số)
a.Giải hệ phương trình trên với m=1
b.Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn 2x+y=9
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m-3\right)x+2y=6\\3mx-y=-4\end{matrix}\right.\) với m là tham số
a, Giải hệ với m = 2
b, Tìm m để hệ có nghiệm duy nhất (x;y) thoả mãn 2x + y > 0