Cho hình thang ABCD có AB = 8cm, AD=6cm, góc ABC =30. Trên AB lấy M và rên CD lấy N sao cho AM = CN = 2cm. Gọi P là giao điểm của AN và DM, Q là giao điểm của BN và CM
a, Tính diện tích ABCD và AMCN
b, C/M : diện tích tam giác APM cộng với diện tích tam giác BQM = diện tích tam giác DPN cộng với diện tích tam giác CQN
c, C/M : diện tích tam giác MNQ = diện tích tam giác ADP cộng với diện tích tam giác BCQ
cho hình bình hành ABCD.Gọi M là trung điểm của AD,BM cắt AC tại K.tính diện tích tam giác AKM /diện tích ABCD
Cho hình bình hành ABCD có đường chéo BD tại M , cắt CD tại E . Từ C kẻ đường thẳng vuông góc BD tại N , cắt AB tại F. Chứng minh rằng : a) tam giác AMD = tam giác CNB b) tứ giác AMCN là hình bình hành c) tứ giác AECF là hình bình hành ( CÓ HÌNH VẼ) GIÚP EM VỚI Ạ EM ĐANG CẦN GẤP
Cho hình thang vuông ABCD ( A = D = 90 ° , CD = 2AB ) . Gọi H là hình chiếu của D lên AC . Gọi M , N lần lượt là trung điểm của HC và HD . a / Chứng minh MN = AB . b / Chứng minh tứ giác ABMN là hình bình hành . c / Chứng minh N là trực tâm tam giác AMD và DMB = 90°
Cho hình bình hành ABCD, phân giác góc A cắt cạnh CD tại M; phân giác góc C cắt
cạnh AB tại N. Chứng minh :
a) DM=AD;BN=BC
Cho hình bình hành ABCD. Gọi I, K theo thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AI, CK theo thứ tự ở M và N. Chứng minh rằng :
a)Tứ giác AICK là hình bình hành.
b) AI // CK.
c) DM = MN = NB.