\(y=\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)+3\)
Do \(sin\left(2x+\dfrac{\pi}{4}\right)\le1\Rightarrow y\le3+\sqrt{2}\)
\(\Rightarrow a=3;b=1\Rightarrow a+b=\)
\(y=\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)+3\)
Do \(sin\left(2x+\dfrac{\pi}{4}\right)\le1\Rightarrow y\le3+\sqrt{2}\)
\(\Rightarrow a=3;b=1\Rightarrow a+b=\)
Gọi M là giá trị lớn nhất của biểu thức \(S=\sin x+\sin y+\sin\left(3x+y\right)-2\sin\left(2x+y\right).\cos x\) , \(\forall x\in\left(0,2\pi\right),\forall y\in\left(0,2\pi\right)\) . Biết \(M=\dfrac{a\sqrt{b}}{c}\) (Với a,b,c \(\in Z^+,\dfrac{a}{c}\) là phân số tối giản, b < 12). Tính \(P=a+b-c\)
Biết rằng \(A=\dfrac{4\sin^4x+\cos^4x+\sin^2x\cos^2x-3\cos^2x}{1-\cos^2x}+\dfrac{2}{\tan^2x}=a\sin^bx\) , với a, b là các số tự nhiên và \(x\ne\dfrac{k\pi}{2}\left(k\in Z\right)\) . Tính \(T=3a+4b\)
Tính giá trị của hàm số lượng giác:
\(\tan\alpha+\cot\alpha=2\) ; \(0< \alpha< \dfrac{\pi}{2}\)
Cho cosα= \(\dfrac{1}{4}\). Tính giá trị lớn nhất cung \(\dfrac{\pi}{2}\) biết \(0< \alpha< \dfrac{\pi}{2}\)
cho 0 < \(\alpha\)<\(\dfrac{\pi}{2}\): xác định dấu của các giá trị lượng giác :
a) sin(\(\alpha\) - \(\pi\))
b) cos(\(\dfrac{3\pi}{2}\) - \(\alpha\) )
c) tan(\(\alpha\) + \(\pi\) )
d) cot(\(\alpha\) + \(\dfrac{\pi}{2}\) )
giúp nhau nha
Cho tam giác ABC có số đo 3 góc là A, B, C thỏa mãn điều kiện \(\tan\dfrac{A}{2}+\tan\dfrac{B}{2}+\tan\dfrac{C}{2}=\sqrt{3}\) . Tam giác ABC là tam giác gì ?
Rút gọn biểu thức \(A=\dfrac{\sin x+\sin2x+\sin3x}{\cos x+\cos2x+\cos3x}\)
Rút gọn biểu thức :
a) \(4a^2\cos^260^0+2ab.\cos^2180^0+\dfrac{4}{3}\cos^230^0\)
b) \(\left(a\sin90^0+b\tan45^0\right)\left(a\cos0^0+b\cos180^0\right)\)
Cho \(\sin\alpha=\dfrac{1}{2}\) ,với \(^{90^0}\)<\(\alpha\)<\(^{180^0}\), Giá trị của \(\cos\alpha\) là:
A. \(\dfrac{\sqrt{3}}{2}\)
B. \(-\dfrac{\sqrt{3}}{2}\)
C. \(\dfrac{3}{4}\)
D. \(-\dfrac{3}{4}\)