Cho hàm số y = f(x) có đạo hàm f'(x) = (x3 - 2x2)(x3 - 2x) với mọi x thuộc R. Hàm số \(\left|f\left(1-2018x\right)\right|\) có nhiều nhất bao nhiêu điểm cực trị?
Cho hàm số \(y=f\left(x\right)\) có đạo hàm \(f'\left(x\right)=\left(x-2\right)^2\left(x-1\right)\left(x^2-2\left(m+1\right)x+m^2-1\right)\) , \(\forall x\in R\) . Có bao nhiêu giá trị nguyên của m để hàm số \(g\left(x\right)=f\left(\left|x\right|\right)\) có 5 điểm cực trị ?
Cho hàm số y=f(x)=\(\left\{{}\begin{matrix}2x^3-3\left(m+1\right)x^2+6mx-2\left(x< =3\right)\\nx+46\left(x>3\right)\end{matrix}\right.\)
trong đó m,n thuộc R. Tính tổng tất cả các giá trị nguyên của tham số m để hàm số y=f(x) có đúng ba điểm cực trị
Cho hàm số : \(y=f\left(x\right)=mx^3+3mx^2-\left(m-1\right)x-1\)
Xác định các giá trị của m để hàm số \(y=f\left(x\right)\) không có cực trị
Cho hàm số \(f\left(x\right)=x^4-2mx^2+4-2m^2\) . Có bao nhiêu số nguyên \(m\in\left(-10;10\right)\) để hàm số \(y=\left|f\left(x\right)\right|\) có đúng ba điểm cực trị ?
Cho hàm số y = f(x) xác định trên tập số thực R và có đạo hàm f'(x) = (x - sinx)(x- m- 3)(x- \(\sqrt{9-m^2}\) )3 ∀x∈ R (m là tham số). Có bao nhiêu giá trị nguyên của m để hàm số y =f(x) đạt cực tiểu tại x = 0
Cho hàm số f(x) có f'(x) = (x2 - 4)(x3 - 1)2(3x - 27)(x - 25)3(x - 7)7. Số điểm cực đại của hàm số f(\(\left|x\right|\)) là?
Cho hàm số : \(y=f\left(x\right)=x^4+2\left(m-2\right)x^2+m^2-5m+5\)
Tìm các giá trị của m để đồ thị hàm số có các điểm cực đại và cực tiểu tạo thành 1 tam giác vuông cân
Cho hàm số f(x) = (m - 1)x3 - 5x2 + (m+3)x + 3. Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số y = f(\(\left|x\right|\)) có đúng 3 điểm cực trị?