\(ad-bc=-m^2-1< 0\Rightarrow y\) nghịch biến trên mỗi khoảng xác định
\(\Rightarrow\min\limits_{\left[-2;-1\right]}y=y\left(-1\right)=4\)
\(\Rightarrow\frac{-m^2+1}{-1-1}=4\Rightarrow-m^2+1=-8\Rightarrow m=\pm3\)
\(ad-bc=-m^2-1< 0\Rightarrow y\) nghịch biến trên mỗi khoảng xác định
\(\Rightarrow\min\limits_{\left[-2;-1\right]}y=y\left(-1\right)=4\)
\(\Rightarrow\frac{-m^2+1}{-1-1}=4\Rightarrow-m^2+1=-8\Rightarrow m=\pm3\)
Cho hàm số \(f\left(x\right)\) xác định trên \(R\), có đạo hàm \(f'\left(x\right)=\left(x^2-4\right)\left(x-5\right)\forall x\in R\) và \(f\left(1\right)=0\). Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(g\left(x\right)=\left|f\left(x^2+1\right)-m\right|\) có nhiều điểm cực trị nhất?
A.7 B. 8 C. 5 D. 6
cho hàm số y = f(x) liên tục trên R sao cho \(\max\limits_{\left[-8;\dfrac{8}{3}\right]}=5\). xét hàm số \(g\left(x\right)=2f\left(\dfrac{1}{3}x^3-x^2-3x+1\right)+m\). tìm tất cả các giá trị thực của tham số m để \(\max\limits_{\left[-2;4\right]}g\left(x\right)=-20\)
tìm m để đồ thị hàm số :
1) \(y=x^4-2\left(m+1\right)x^2-2m-1\) đạt cực đại tại x=1
2) \(y=x^4-\left(m+1\right)x^{2^{ }}+1\) đạt cực tiểu tại x=-1
tìm m để hàm số \(y=\dfrac{2x^2+\left(m-1\right)x+1-m}{x-m}\) đồng biến trên \(\left(1;+\infty\right)\)
xác định m để đồ thị hàm số \(y=\dfrac{x^2-\left(2m+3\right)x+2\left(m-1\right)}{x-2}\) không có tiệm cận đứng.
xác định m để đồ thị hàm số \(y=\dfrac{x-1}{x^2+2\left(m-1\right)x+m^2-2}\) có đúng hai tiệm cận đúng
tìm m để hàm số \(y=x^3-mx^2+2\left(m+1\right)x-1\) đạt cực tiểu tại điểm x=-1
Cho hàm số \(y=x^4+2mx^2+m^2+m\left(1\right)\)
Tìm m để đồ thị hàm số (1) có 3 điểm cực trị lập thành một tam giác có 1 góc bằng \(120^o\)
tìm m để hàm số \(y=x^3-2mx^2-\left(m+1\right)x+1\) đồng biến trên (0;2) bằng cách cô lập m