Chương 1:ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Trần Khánh Linh

Cho hàm số y=\(\dfrac{x^2-2x+9}{x-2}\) (C). Tìm m để y=m(x-5)+10 cắt đồ thị (C) tại 2 điểm phân biệt A, B sao cho M(5;10) là trung điểm AB

Akai Haruma
2 tháng 8 2017 lúc 23:40

Lời giải:

PT hoành độ giao điểm:

\(x^2(m-1)+x(12-7m)+(10m-29)=0(1)\)

Để hai đồ thị hàm số cắt nhau tại hai điểm phân biệt thì PT $(1)$ phải có hai nghiệm phân biệt \(\Leftrightarrow \left\{\begin{matrix} m\neq 1\\ \Delta=(12-7m)^2-4(m-1)(10m-29)>0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m\neq 1\\ 9m^2-12m+28=(3m-2)^2+24>0\end{matrix}\right.\Leftrightarrow m\neq 1\)

Khi đó , áp dụng định lý Viete, nếu $x_1,x_2$ là hai nghiệm của $(1)$ thì: \(x_1+x_2=\frac{7m-12}{m-1}\)

Hai giao điểm của hai ĐTHS là \(A(x_1,m(x_1-5)+10);B(x_2,m(x_2-5)+10)\)

\(M(5,10)\) là trung điểm của $AB$

\(\Leftrightarrow \left\{\begin{matrix} \frac{x_1+x_2}{2}=5\\ \frac{y_1+y_2}{2}=\frac{m(x_1+x_2)-10m+20}{2}=10\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{7m-12}{m-1}=10\\ \frac{m(7m-12)}{m-1}=10m\end{matrix}\right.\)

Suy ra \(m=\frac{-2}{3}\) (thỏa mãn)


Các câu hỏi tương tự
Nguyễn Thành Trung
Xem chi tiết
Nguyễn Ngọc Minh
Xem chi tiết
Nguyễn Trần Khánh Linh
Xem chi tiết
quangduy
Xem chi tiết
Ngô Tuân Mạnh
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Minh Ole
Xem chi tiết
Hạnh Hạnh
Xem chi tiết
yến trần
Xem chi tiết