Lời giải:
Ta có \(y=\frac{1}{3}x^3-\frac{mx^2}{2}+2x+2016\)
\(\Rightarrow y'=x^2-mx+2\)
Để hàm số luôn đồng biến trên tập xác định thì \(y'\geq 0\)
\(\Leftrightarrow x^2-mx+2\geq 0\forall x\in\mathbb{R}\)
Theo định lý về dấu của tam thức bậc 2, điều này xảy ra khi mà:
\(\Delta=m^2-8\leq 0\Leftrightarrow -2\sqrt{2}\leq m\leq 2\sqrt{2}\)