Tìm m để hàm số \(f\left(x\right)=\frac{1}{3}x^2-mx^2+mx-1\) đạt cực trị tại \(x_1,x_2\) thỏa mãn điều kiện \(\left|x_1-x_2\right|\ge8\)
Cho hàm số \(y=x^3-3\left(m+1\right)x^2+9x-m\) (1) với m là tham số thực
Xác định m để hàm số (1) đạt cực trị tại \(x_1,x_2\) thỏa mãn \(\left|x_1-x_2\right|\le2\)
Cho hàm số \(y=x^3-2\left(m-1\right)x^2+9x+2-m\) (1)
Tìm m ( \(m\in R\) để hàm số (1) đạt cực trị tại \(x_1,x_2\) thỏa mãn \(\left|x_1-x_2\right|=2\)
Cho \(f\left(x\right)=\frac{2}{3}x^3+\left(\cos a-3\sin a\right)x^2-8\left(1+\cos a\right)x+1\)
a) Chứng minh rằng hàm số luôn có cực đại và cực tiểu
b) Giả sử hàm số đạt cực trị tại \(x_1,x_2\). Chứng minh rằng \(x_1^2+x_2^2\le18\)
Tìm m để hàm số y = 1 phần 3 x mũ 3 - (m + 1) x^2 + ( m^2 + 2) x + m - 2 đạt cực trị tại x1 x2 thỏa x1 bình phương + X2 bình phương = 10
Cho hàm số \(y=4x^3+mx^2-3x\)
Tìm m để hàm số có hai cực trị tại \(x_1\) và \(x_2\) thỏa mãn \(x_1=-4x_2\)
Cho hàm số \(y=x^3-\frac{3}{2}\left(m-2\right)x^2-3\left(m-1\right)x+1\left(1\right)\), m là tham số. Tìm m dương để đồ thị hàm số (1) có giá trị cực đại, giá trị cực tiểu lần lượt là \(y_{CD},y_{CT}\) thỏa mãn \(2y_{CD}+y_{CT}=4\)
cho hàm số y=\(\dfrac{x^2+mx+1}{x+m}\)với m là tham số. với giá trị nào của tham số m thì hàm số đạt cực đại tại x=2?
a. m=-3 b.m=3 c.m=-1 d.m=0
Tìm a để các hàm số \(f\left(x\right)=\frac{x^3}{3}-\frac{x^2}{2}+ax+1;g\left(x\right)=\frac{x^3}{3}+x^2+3ax+a\) có các điểm cực trị nằm xen kẽ nhau