\(\dfrac{x^2}{2}+2x+\dfrac{m}{2}+3=0\)
=>x^2+4x+m+6=0
\(\text{Δ}=4^2-4\left(m+6\right)=16-4m-24=-4m-8\)
Để phương trình có hai nghiệm phân biệt thì -4m-8>0
=>-4m>8
=>m<-2
\(\dfrac{x^2}{2}+2x+\dfrac{m}{2}+3=0\)
=>x^2+4x+m+6=0
\(\text{Δ}=4^2-4\left(m+6\right)=16-4m-24=-4m-8\)
Để phương trình có hai nghiệm phân biệt thì -4m-8>0
=>-4m>8
=>m<-2
a, Lập bảng biến thiên, vẽ đồ thị (P) của hàm số : y = - x^2 + 4x - 3
b, Dựa vào đồ thị, hãy:
+ Tìm x để y > 0 ; y < 0;
+ Tìm max, min của hàm số trên đoạn [0;4].
+ Biện luận theo m số nghiệm của pt x^2 - 4x = m
+Tìm k để pt -x^2 + 4x = k có nghiệm thỏa mãn [-1;3]
cho hàm số \(y=x^2-2x+2\) có đồ thị là Parabol (P) và đường thẳng d:\(y=x+m\). Gọi \(m_o\) là giá trị của m để (d) cắt (P) tại 2 điểm phân biệt A,B sao cho \(OA^2+OB^2=10\). Tìm m
Bài 1.Cho hàm số
1.Lập bảng biến thiên và vẽ đồ thị
2.Biện luận số nghiệm của phương trình -x^2 - 2x= 3m bằng cách sử dụng đồ thị (P)
3.Tìm m để phương trình |-x^2-2x+1| có 4 nghiệm phân biệt bằng cách sử dụng đồ thị.
cho hàm số y = x2 -2mx -m -2 (1) ( m là tham số thực )
tìm tất cả các giá trị của tham số m để đồ thị hàm số (1) cắt đường thẳng d: y = 2x -7 tại 2 điểm phân biệt có hoành độ đều lớn hơn -1
cho hàm số y=f(x)=\(\dfrac{m\sqrt{2018+x}+\left(m^2-2\right)\sqrt{2018-x}}{\left(m^2-1\right)x}\) có đồ thị là \(\left(C_m\right)\) (m là tham số ) số giá trị của m để đồ thị \(\left(C_m\right)\) nhận trục Oy làm trục đối xứng
1. Cho hàm số \(y=x^2-5x+4\)
a) Khảo sát sự biến thiên và vẽ đồ thị (P) của hàm số đã cho.
b) Tìm m để phương trình \(\left|x^2-5x+4\right|-2=m\) có bốn nghiệm phân biệt.
c) Tìm giá trị lớn nhất và nhỏ nhất của hàm số \(f\left(x\right)=\left|x^2-5x+4\right|\) với x ∈ [0;5]
2. Cho hàm số \(y=-2x^2+4x\)
a) Vẽ đồ thị (P) của hàm số đã cho.
b) Tìm m để phương trình \(\left|x^2-2x\right|=m\) có ba nghiệm phân biệt.
Cho hàm số: \(y=x^2-3x-4\) có đồ thị là (P).
a) Lập bảng biến thiên và vẽ (P).
b) Tìm m để phương trình \(\left|x^2-3x-4\right|=2m-1\) có bốn nghiệm phân biệt.
c) Tìm m để phương trình \(x^2-3\left|x\right|-4=m\) có 3 nghiệm.
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
Cho hàm số (P): \(y=f\left(x\right)=x^2+4x+3\).
a. Khảo sát và vẽ đồ thị hàm số.
b. Dựa vào đồ thị tìm x để f(x) > 0, f(x) < 0.
c. Dựa vào đồ thị tìm m để phương trình \(x^2-4x+2-m=0\).
d. Tìm m để (P) cắt (d): y = 2x + m - 5 tại 2 điểm phân biệt.
Cho hàm số \(y=-2x^2+\left(m-3\right)x+5-m\)
a) Lập bảng biến thiên và vẽ đồ thị hàm số với m=0
b) Dựa vào đồ thị, Tìm a để phương trình \(2x^2+3x+a=0\) có 2 nghiệm phân biệt
c) Dựa vào đồ thị, vẽ đồ thị hàm số \(y=\left|2x^2+3x-5\right|\)
d) Vẽ đồ thị hàm số \(y=-2x^2-3\left|x\right|+5\)
Từ đó tìm a để \(2x^2+3\left|x\right|+a=0\) có 4 nghiệm phân biệt
e) Tìm m để hàm số đồng biến trên khoảng (amvc;3)