a/ \(f\left(-x\right)=ax^2-bx+c\)
\(f\left(x\right)\) chẵn khi và chỉ khi \(f\left(x\right)=f\left(-x\right)\) \(\forall x\)
\(\Leftrightarrow ax^2+bx+c=ax^2-bx+c\) \(\forall x\)
\(\Leftrightarrow2bx=0\) \(\forall x\Rightarrow b=0\Rightarrow y=ax^2+c\)
Do (P) đi qua A; B
\(\Rightarrow\left\{{}\begin{matrix}a+c=0\\4a+c=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\c=1\end{matrix}\right.\) \(\Rightarrow y=-x^2+1\)