Cho hàm số y= f(x)=4x-5. Tính: f(1).f(3.f(1/2).f(x)-5/4)
cho hàm số f(x) = 5 x - 2 .không tính hãy so sánh f(3)và f(√8)
Bải 19, Xét sự biến thiên của các hàm số: a) y = f(x)=2x² trong (0;+∞). c) y = f(x)=x²+2x+3. b) _y = f(x)=−6x² trong (0;+∞). d) y = f(x) = -x² + 4x+1.
Cho hàm số y = f(x)= 3x +2
a) Tính f(1), f(2), f(0)
b) cho x1<x2 tìm mối quan hệ của f(x1) ), f( x2)
tính giá trị của hàm số y = f(x) = \(\dfrac{x}{2}-\sqrt{x^2-1}+2\) tại:
a, x0 = \(\sqrt{5}\) b, x0 = \(\dfrac{1}{4}\)
Trong các hàm số sau, hàm số nào là hàm số bậc nhất ? Hãy xác định các hệ số a, b và xét xem hàm số nào đồng biến ? Hàm số nào nghịch biến ?
a) \(y=3-0,5x\)
b) \(y=-1,5x\)
c) \(y=5-2x^2\)
d) \(y=\left(\sqrt{2}-1\right)x+1\)
e) \(y=\sqrt{3}\left(x-\sqrt{2}\right)\)
f) \(y+\sqrt{2}=x-\sqrt{3}\)
cho hàm số y=f(x) =4x+1-\(\sqrt{3}\) (2x+1)
a) chứng tỏ rằng hàm số này là hàm số bậc nhất, đồng biến
b)tìm x để f(x)=0
cho hàm số y=f(x)= (2m-3)x+m-5
Tìm m để f(1) > f(2) .
Bài 1: Cho (d) y= (m + 3)x + y. Tìm m và n để:
a) (d) đi qua A (1;-3) và V (-2;3)
b) (d) cắt Oy tại điểm có tung đô 1 - √3
c) (d) cắt đường thẳng 3y - x - 4 = 0
d) (d) // đường thẳng 2x + 5y = -1
e) (d) \(\equiv\) với đường thẳng y - 3x - 7 = 0
Bài 2: Cho y = f (x) = ( 5 - 3a)x + a + 6
a) Cho f (-2) = 10. Tính f (2)
b) Cho f (3) = 5, học sinh đã cho đồng biến hay nghịch biến.