\(f\left(\left|a\right|\right)=2\Leftrightarrow\left(\sqrt{3}+1\right)\left|a\right|-2\sqrt{3}=2\)
\(\Leftrightarrow\left(\sqrt{3}+1\right)\left|a\right|=2\sqrt{3}+2=2\left(\sqrt{3}+1\right)\)
\(\Leftrightarrow\left|a\right|=2\Rightarrow a=\pm2\)
\(f\left(\left|a\right|\right)=2\Leftrightarrow\left(\sqrt{3}+1\right)\left|a\right|-2\sqrt{3}=2\)
\(\Leftrightarrow\left(\sqrt{3}+1\right)\left|a\right|=2\sqrt{3}+2=2\left(\sqrt{3}+1\right)\)
\(\Leftrightarrow\left|a\right|=2\Rightarrow a=\pm2\)
7) Cho hàm số y=\(\left(3-\sqrt{2}\right)x+1\). Tính giá trị của x khi y nhận các giá trị sau: 0; 1; 8; \(2+\sqrt{2}\) ; \(2-\sqrt{2}\)
cho hàm số \(y=\left(\sqrt{3}-1\right)x+5\) khi \(x=\sqrt{3}+1\) thì y nhận giá trị là
A. 5
B. 7
C .9
D.\(9+2\sqrt{3}\)
1. Cho \(\left\{{}\begin{matrix}a,b,c\ge0\\a+b+c=1_{ }\end{matrix}\right.\). Chứng minh rằng: \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
2. Cho \(\left\{{}\begin{matrix}a\ge3\\b\ge4\\c\ge2\end{matrix}\right.\). Tìm giá trị lớn nhất của biểu thức P=\(\dfrac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{2\sqrt{2}}\)
3. Cho \(x,y>0\). Tìm giá trị nhỏ nhất của biểu thức: \(f\left(x;y\right)=\dfrac{\left(x+y\right)^3}{xy^2}\)
1.y=f(x)=\(\left(1-\sqrt{3}\right)x\)
a.Cmr hàm số nghịch biến trên R
b.So sánh \(f\left(1+\sqrt{3}\right)\) và \(f\left(2+\sqrt{3}\right)\)
Cho hai đẳng thức \(f\left(x\right)=5x+1\)và \(g\left(x\right)=ax+3\). Tìm giá trị của g (1) nếu \(a=f\left(2\right)-f\left(-1\right)\)
a) Tính giá trị của biểu thức: A=\(\dfrac{\sqrt{\dfrac{5}{2}-\sqrt{6}}+\sqrt{\dfrac{5}{2}+\sqrt{6}}}{\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}}\)
b) Cho biểu thức B=\(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\times\left(\dfrac{x\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{\sqrt{x}+x}{\sqrt{x}+1}\right)\)(với x≥0;x≠1)
Rút gọn B rồi tìm điều kiện của x để B<0
Cho hàm số \(y=\left(\sqrt{3}-\sqrt{5}\right)x+\sqrt{5}+\sqrt{3}\)
a,Hàm số trên đồng biến hay nghịch biến vì sao?
b,Tính y khi y=1
c,Tính x khi y = 1
d,Tìm x để \(f^2_{\left(x\right)}=8+2\sqrt{5}\)
1,Cho x,y là hai số thực dường thỏa mãn \(x^3+y^3=xy-\dfrac{1}{27}\)
Tính giả trị \(P=\left(x+y+\dfrac{1}{3}\right)^3-\dfrac{3}{2}\left(x+y\right)+2016\)
2,Cho \(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2012^{2011}\).
Tính giá trị \(M=x\sqrt{1+y^2}+\sqrt{1+x^2}\)
Cho hàm số f\(_{\left(x\right)}\)=\(\dfrac{\left|x+1\right|+\left|x-1\right|}{\left|x+1\right|-|x-1}\)
a, Tìm tập xác định D của hàm số
b, CMR f\(_{\left(-x\right)}\)=-f\(_{\left(x\right)}\) với mọi x thuộc D