Bài này số thực dương thì chỉ tìm được GTLN, còn GTNN chỉ tồn tại khi x;y là số thực bất kì
\(x^2+y^2-xy=4\Leftrightarrow x^2+y^2-\frac{x^2+y^2}{2}\le4\)
\(\Leftrightarrow x^2+y^2\le8\)
\(\Rightarrow P_{max}=8\) khi \(x=y=2\)
Nếu bỏ điều kiện x;y dương thì sử dụng miền giá trị tìm ca min lẫn max:
Từ điều kiện ban đầu suy ra x;y đều khác 0
\(\frac{P}{4}=\frac{x^2+y^2}{x^2-xy+y^2}=\frac{\left(\frac{x}{y}\right)^2+1}{\left(\frac{x}{y}\right)^2-\frac{x}{y}+1}\)
Đặt \(\frac{x}{y}=a\Rightarrow\frac{P}{4}=\frac{a^2+1}{a^2-a+1}\Leftrightarrow\left(P-4\right)a^2-Pa+P-4=0\)
\(\Delta=P^2-4\left(P-4\right)^2\ge0\Leftrightarrow-3P^2+32P-64\ge0\)
\(\Leftrightarrow\frac{8}{3}\le P\le8\)
\(P_{max}=8\) khi \(x=y=\pm2\)
\(P_{min}=\frac{8}{3}\) khi \(x=-y=\frac{2\sqrt{3}}{3}\) và hoán vị