Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Angela jolie

Cho hai hàm số y=2x2 và y=|mx|. Tìm m để đồ thị của hai hàm số đã cho cắt nhau tại ba điểm phân biệt là ba đỉnh của tam giác đều.

Nguyễn Việt Lâm
12 tháng 4 2020 lúc 15:36

Pt hoành độ giao điểm:

\(2x^2=\left|mx\right|\Leftrightarrow\left(2x^2\right)^2=\left(mx\right)^2\)

\(\Leftrightarrow x^2\left(4x^2-m^2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{m}{2}\\x=-\frac{m}{2}\end{matrix}\right.\)

Tọa độ 3 giao điểm lần lượt là: \(A\left(0;0\right);B\left(\frac{m}{2};\frac{m^2}{2}\right);C\left(-\frac{m}{2};\frac{m^2}{2}\right)\)

Tam giác đã cho luôn cân tại A nên để tam giác đã cho đều

\(\Leftrightarrow\frac{m^2}{2}=\frac{\left|m\right|.\sqrt{3}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\left(l\right)\\m=\sqrt{3}\\m=-\sqrt{3}\end{matrix}\right.\)


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Trang Triệu
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Big City Boy
Xem chi tiết
Trúc Nguyễn
Xem chi tiết
Trúc Nguyễn
Xem chi tiết