ACB = 90 (góc chắn nửa đường tròn) =>AC vuông góc BC
PB,PC là 2 tiếp tuyến (O) tại tiếp điểm B,C. => PB=PC và PO là phân giác BPC
=>PO vuông góc với BC. => OP song song với AC
ACB = 90 (góc chắn nửa đường tròn) =>AC vuông góc BC
PB,PC là 2 tiếp tuyến (O) tại tiếp điểm B,C. => PB=PC và PO là phân giác BPC
=>PO vuông góc với BC. => OP song song với AC
Cho đường tròn (O; R) và điểm a nằm ngoài đường tròn (sao cho OA> 2R). Qua điểm A vẽ hai tiếp tuyến AB, AC (B, C là tiếp điểm). Vẽ đường kính CE của đường tròn (O), AE cắt (O) tại điểm thứ hai là F.
a) Chứng minh: Tứ giác ABOC nội tiếp và OA vuông góc với BC tại H
b) Chứng minh: AB2= AE. AF và FHOE nội tiếp
Trên đường tròn tâm O đường kính AB=2R , lấy điểm C sao cho sđ cung BC=60° . Hai tiếp tuyến với đường tròn vẽ từ B và C cắt nhau tại D .
a) Tính sđ góc BOC và sđ cung nhỏ AC .
b) chứng minh tứ giác OBDC nội tiếp .
c) Tia AC cắt tia BD tại E . Chứng minh D là trung điểm của BE .
d) Biết R=15cm . Tính diện tích hình quạt giới hạn bởi cung nhỏ AC( biết π=3,14)
Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB.Từ điểm P trên Ax kẻ tiếp tuyến thứ hai PC với nửa đường tròn (C là tiếp điểm).AC cắt OP tại K; PB cắt nửa đường tròn (O) tại D (D khác B).
a.Chứng minh APDK la tứ giác nội tiếp đường tròn
b.Chứng minh góc ADK = góc ACO
Cho đường tròn O có đường kính AB. Từ điểm S thuộc tia đối của tia AB kẻ hai tiếp tuyến SC và SD dây CD cắt AB tại H. Vẽ đường tròn (O') đi qua C và tiếp xúc với đường thẳng AB tại S. Hai đường tròn O và (O')cắt nhau tại điểm M khác C. a) Chứng minh tứ giác SMHD nội tiếp. b) Gọi K là hình chiếu vuông góc của C trên BD I, là giao điểm của BM và CK. Chứng minh HI song song với BD. c) Các đường thẳng SM và HM lần lượt cắt O tại các điểm L và T ( L T, khác M ). Chứng minh rằng tứ giác CDTL là hình vuông khi và chỉ khi 2 MC^2=MS.MD
Cho đường tròn (O), hai đường kính AB và CD vuông góc nhau, M là một điểm trên cung nhỏ AC. Tiếp tuyến của đường tròn (O) tại M cắt DC tại S. Gọi I là giao điểm của CD và MB. a) Chứng minh tứ giác AIOM nội tiếp. b) Chứng minh MIC = MDB và MSD = 2MBA c) MD cắt AB tại K. Chứng minh DK.DM không phụ thuộc vị trí của điểm M trên cung AC.
cho tam giác nhọn ABC đường tròn tâm o đường kính BC cắt AB,AC lần lượt tại D,E . hai đường thẳng BD và CE cắt nhau tại H . a,Chứng minh ADHE là tứ giác nội tiếp đường tròn
b,Chứng minh OD là tiếp tuyến của đường tròn ngoại tiếp tam giacs ADH
c,Cho góc BAC = 60 độ . chứng minh Sabc = Sade
Từ điểm A nằm ngoài đường tròn (O) vẽ hai tiếp tuyến AB và AC (B,C là các tiếp điểm ), đường thẳng qua A cắt đường tròn (O) tại D và E (D nằm giữa A và E, dây DE không đi qua tâm O). Gọi H là trung điẻm của DE, AE cắt BC tại K
a) Chứng minh tứ giác ABOC nội tiếp, xác định tâm đường tròn nội tiếp tứ giác ABOC
b) Chứng minh HA là tia phân giác của góc BHC
c) Chứng minh \(\dfrac{2}{AK}\)=\(\dfrac{1}{AD}\)+\(\dfrac{1}{AE}\)
Cho nửa đường tròn tâm O, đường kính AB = 2R. Vẽ tiếp tuyến Ax với nửa đường tròn (O). Gọi C điểm trên cung AB, D là điểm chính giữa cung AC, E là giao điểm của BD và Ax. Hai tia AD và BC cắt nhau tại K.
a) Chứng minh rằng BD.BE = 4R2.
b) Chứng minh tam giác BAK cân và AEKB là tứ giác nội tiếp.
c) Gọi I là giao điểm của AC và BD và P là giao điểm của KI và AB.
Chứng minh ip/ik = bp/ba.
d) Trong trường hợp EC//AB. Hãy tính BC theo R
Từ điểm A ở ngoài đường tròn (O) vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Vẽ đường kính BD của đường tròn (O). Đoạn AD cắt đường tròn (O) tại E (E khác D). Gọi I là trung điểm của ED, H là giao điểm của AO và BC.
a) Chứng minh tứ giác ABOC nội tiếp được đường tròn.
b) Chứng minh: IE2 + AH.AO = AI2.
c) Gọi K là chân đường vuông góc kẻ từ C đến OD. Đoạn ED cắt CK tại M. Chứng minh M là trung điểm của CK.
giải giúp mình câu b và c với ạ, mình cảm ơn