cho 2 đường tròn (O; r) và (O' r') cắt nhau tại 2 điểm A, B (r'>r). Tiếp tuyến chung MN tiếp xúc với 2 đường tròn (O) và (O') lần lượt tại M, N (A, M, N nằm trên cùng một nửa mặt phẳng bờ OO'). Đường thẳng MN cắt OO' tại I
a) Chứng minh tam giác IOM đồng dạng với tam giác IO'N
b) gọi C là giao điểm của đường thẳng IA với đường thẳng d, d đi qua O và song sóng với O'A. Chứng minh C nằm trên (O)
c) Chứng minh IA tiếp xúc với đường tròn ngoại tiếp tam giác AMN
cho hai đường tròn (O;R) và (O'R') tiếp xúc ngoài tại A và hai điểm B,C lần lượt trên (O) và (O') sao cho ∠BAC=90*.CMR OB//O'C
cho tam giác đều ABC nội tiếp đường tròn (O;R).gọi (O') là đường tròn tiếp xúc trong với đường tròn (O) và tiếp xúc hai cạnh AB,AC theo thứ tự tại M và N
a, CMR 3đ O,M,N thẳng hàng
b,tính bán kính của (O') theo R
Cho đường tròn (O;R) và một điểm S nằm bên ngoài đường tròn .Kẻ các tiếp tuyến SA,SB với đường tròn (A,B là các tiếp điểm).Một đường thẳng đi qua S(không đi qua tâm 0)cắt đường tròn (O;R) tại hai điểm M và N nằm giữa S và N.Gọi H là giao điểm của SO và AB;I là trung điểm MN.Hai đường thẳng OI và AB cắt nhau E
a) Chứng minh IHSE là tứ giác nội tiếp đường tròn
b) Chứng minh : OI.OE=R\(^2\)
c) Cho SO=2R và MN=R\(\sqrt{3}\) .Tính diện tích tam giác ESM theo R
AI GIÚP VVS HELP ME T_T
cho 2 đường tròn (O;R) và (O'R') tiếp xúc ngoài tại A,góc vuông xoy thay đổi luôn đi qua A,cắt đường tròn (O;R) vad (O'R') tại B và C.Gọi H là hình chiếu của A trên BC.Xác định vị trí cả B,C để AH có độ dài lớn nhất
Cho đường tròn tâm O bán kính R và đường thẳng (d) cắt đường tròn tâm O tại hai điểm C và D (đường thẳng d không đi qua tâm O). Từ điểm S bất kì thuộc tia CD (S nằm ngoài đường tròn tâm O), kẻ hai tiếp tuyến SA và SB với đường tròn tâm O (với A và B là các tiếp điểm). Gọi H là trung điểm của đoạn CD và E là giao điểm của AB với SC. Chứng minh rằng: Khi S di chuyển trên tia CD (S nằm ngoài đường tròn tâm O) thì đường thẳng AB luôn đi qua 1 điểm cố định
cho hai đường tròn (O;R) và (O',R') tiếp xúc ngoài tại A , một góc vuông xAy thay đổi quanh A sao cho tia Ax cắt (O;R) tại B và Ay cắt (O',R') tại C. gọi M là trung điểm của BC,MO cắt AB tại D, MO' cắt AC tại E chứng minh rằng tứ giác ADME là hình chữ nhật.
Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn.
Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt
đường tròn (O; R) tại hai điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây
CD, kẻ AH vuông góc với MO tại H.
a/ Tính OH. OM theo R.
b/ Chứng minh: Bốn điểm M, A, I , O cùng thuộc một đường tròn.
c/ Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R).
helllpppppppppppp mmmmmmmmmmmmmmmiiiiiiiiiiiiii
Xét đường thẳng d cố định ở ngoài đường tròn (O;R). Khoảng cách từ O đến d không nhỏ hơn \(R\sqrt{2}\). Từ 1 điểm M thuộc d dựng các tiếp tuyến MA, MB đến đường tròn tâm O (A, B là các tiếp điểm). Dựng cát tuyến MCD( tia MC nằm giữa hai tia MO, MA và MC<MD). Gọi E là trung điểm của CD. H là giao điểm của AB và MO
CM:
a) Các tiếp tuyến tại C và D của đường tròn (O) cắt nhau tại 1 điểm nằm trên đường thẳng AB
b) Đường thẳng AB luôn đi qua 1 điểm cố định